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Pork quality is largely influenced by the fat composition. Getting reliable 
data is critical for any successful analysis. Using multidimensional statistical 
analysis methods opens up the possibility to visualize Raman spectroscopy 
results of fatty acid (FA) profiles and identify animals by breed. Back fat of 
the Altai breed (sample 1), Duroc (sample 2) and Livenskaya (sample 3) was 
analyzed. At least 36 spectra were taken from each sample by the Renishaw 
inVia Reflex confocal Raman spectrometer and analyzed using the principal 
component method. The Cattell’s scree test was applied to determine the 
number of components “significant main components” to retain, namely – 
PC1, PC2 and PC3 (85%). It is shown samples 1 and 3 FA form clusters in all 
graphs of the “significant” main components. Sample 2 forms an area on the 
PC1 / PC2 graph and locates in the I, III and IV quadrants. Sample 1 - in the 
II quadrant, and Sample 3 - in the IV quadrant. For PC1 the most prominent 
variable is 1650 cm-1, responsible for the C = C molecular bond, for the 
saturated FA and conjugated linoleic acid. Spectrum 1650 cm-1 is important 
in the intraspecific classification of pork. For PC2 – main contribution of 
868 cm-1 was marked, and 1368 cm-1 for PC3. Each spectrum characterized 
group of the pork backfat FA. PCA makes it possible to: (1) to evaluate pork 
fat lipid profile by groups - saturated, mono-, polyunsaturated, with a long 
carbon chain, etc.; (2) obtain reliable differences between breeds; (3) identify 
individual FA, via Raman spectra patterns.
Keywords: Raman spectra, hidden patterns, “significant” main component, 
chemometrics
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INTRODUCTION

Principal component analysis (PCA) is used to reduce (lower) 
the dimensionality of initial data and to study/identify 
similarities and hidden conformities between samples where 
the relationship between data and grouping are not yet clear 
or have not been identified. 
Karl Pearson is considered the founder of the PCA method. 
In 1901, he published his research paper “On lines and 
planes of closest fit to systems of points in space” (Pearson, 
1901). However, back in 1889, an English mathematician 

James Joseph Sylvester published a work on the same topic 
(Sylvester, 1889). 
Principal component analysis refers to multivariate methods 
of statistical analysis (see figure 1). Sometimes this method 
is also called the Karhunen-Loève transform or the Hotelling 
transform.
Currently, the PCA method is very popular and is used in 
many areas, including the food industry: in studying the 
taste of wines (Vilanova et al. 2010) and marmalades based 
on agar-agar, gelatin, and pectin (Zhilinskaya et al. 2018); 
the texture of extruded snacks (Paula and Conti-Silva, 
2014); cheeses (Deegan et al. 2014); and the influence of 
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the plant component on the overall acceptability of plant-
based burgers (Dhanapal and Erkinbaev, 2024). A number 
of authors have used PCA to assess the impact of individual 
animal and poultry characteristics on raw material quality. 
Thus, the work (Li et al. 2024) studied the impact of the 
genetic characteristic of growth rate on the duck meat quality. 

Chinese researchers Xiao (2024) successfully used PCA to 
identify correlations between the meat characteristics of 434 
broilers of 12 different breeds from Southern China. The 
method was successfully used to identify yak meat depending 
on fattening and growing conditions – pasture- or grain-fed 
ones (Liu et al. 2024). 

Fig. 1: Classification of multivariate statistical methods

Many works are devoted to the use of chemometrics - a set of 
mathematical tools for studying (bio)chemical processes in 
living tissues. In particular, when analyzing the characteristics 
of agricultural raw materials and products. 
In the study by Szykuła (2023), Raman spectroscopy in 
combination with chemometric methods (PCA and PLS-
DA) was used to study the differences in fat tissue profiles 
for inter- and intra-species classification of meat. A clear 
separation was shown between pork, lamb, and chicken 
samples. The best separation was observed for the first 
principal component (explaining 78.4% of the total variance) 
and the second principal component (explaining 12.1% of 
the total variance). 
In the work (Saleem et al. 2021), the capabilities of Raman 
spectroscopy and PCA were used to study the characteristics 
of goat, cow, and buffalo fat. The scientists studied the relative 
concentration of beta-carotene, fatty acids, lipids, conjugated 
linoleic acid (CLA), and vitamin D in them. The score plot 
shows that 51% of the variance is contributed by PC1 and 
10% - by PC2. 
Berhe (2016), in their study, investigated models of partial 
least squares (PLS) for predicting individual fatty acids 
based on Raman spectra related to iodine value and other 
common characteristics of fatty acids in pork fat. Principal 
component analysis was performed to extract information 
about variations in the dataset. PCA proves that there are 
differences between the outer and inner layers of animal fat. 
As a result, PLS models were obtained with good correlation 
(from 0.78 to 0.90) between Raman spectra and the following 
parameters: iodine value (IV), saturated fatty acids (SFA), 
monounsaturated fatty acids (MUFA), and polyunsaturated 

fatty acids (PUFA). 
Logan (2020) conducted a study on using Raman 
spectroscopy to differentiate between grass-fed and grain-fed 
cattle carcasses in order to develop a method for identifying 
feeding systems. The experiment involved 300 beef carcasses 
(150 grass-fed and 150 grain-fed animals). The clustering 
in the scatterplot obtained by PCA shows that the variation 
in the spectra is related to the grain-fed and grass-fed 
systems. As a result, the scientists stated that it is possible to 
differentiate between grass-fed and grain-fed cattle carcasses 
using Raman spectra. 
Robert (2020) examined 90 red meat samples: 1) beef (Bos 
Taurus); 2) lamb (Ovis aries); 3) venison (Cervus elaphus 
scoticus, hippelaphus и pannonensis). For each type of meat, 
30 samples were selected. Red meat samples were measured 
using Raman spectroscopy and analyzed by PCA as an 
unsupervised multidimensional analysis tool, while support 
vector machine (SVM) classification and partial least squares 
discriminant analysis (PLSDA) were used as a supervised 
multidimensional analysis tool. The first two principal 
components explained 59% of the variance in meat samples. 
The PCA score plot shows that beef, venison, and lamb are 
clearly separated from each other. Moreover, marker signals 
are identified: 911 cm-1 for lamb and 1267-1316 cm-1 for beef. 
Venison samples are grouped in the positive space of PC2, 
while beef and lamb samples are grouped in the negative 
space of PC2. 
The work (Ostovar pour et al. 2019) presents a study using 
chemometric analysis to determine chemically specific 
spectral characteristics of meat suitable for chemical 
identification. The chemicals studied were glycogen, glucose, 
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lactate, and cortisol, which are predictors of meat quality. 
The sample was beef rump, consisting of the muscles M. 
biceps femoris and M. gluteus medius. The authors conclude 
that the chemometric analysis clearly shows the separation 
of metabolites into four distinct groups, even for such 
chemically similar compounds as glucose, glycogen, and 
lactate. 
Abbas (2009) compared the Raman spectra of poultry, pork, 
beef, lamb, and fish fats using PCA. The method was applied to 
the collected spectra in the range between 3100 and 2650 cm-

1, and 1800-1200 cm-1. The overall variation of the dispersion 
was 91% (РС1=67%, РС2=24%). The visual representation 
of the method showed the differences between the fats. Fish, 
poultry, pork, and beef fats were clearly differentiated. Thus, 
the Raman spectra reflect the composition of these samples 
well. 
In the work (Boyaci et al. 2014), seven types of meat and 
their salami were successfully differentiated from each 
other according to their origin using Raman spectroscopy 
and PCA. The results of this study showed that Raman 
spectroscopy with a chemometric method can be used to 
determine the origin of meat types. 
Lyndgaard (2011), in their study, applied PCA to Raman 
spectra of porcine adipose tissue to differentiate fat layers 
(external and internal) and to evaluate the variation in fatty 
acid composition with fat depth and fat layer. The samples 
for this study were 16 pig carcasses. Variability in fatty acid 
composition was ensured by selecting carcasses from the 
two extreme fattening groups and the normal central group. 
To relieve proper depth characterization, the minimum 
thickness of the loin fat should be 16 mm. The PCA plot 
shows almost complete separation of the fat layers along 
the first principal component, which describes 79% of the 
total spectral variation. As a result, the authors conclude that 
Raman spectroscopy is a potential measurement method for 
grading pork carcasses on the conveyor belt. 
Gao (2020) compared the capabilities of near-infrared 
Raman (FT-Raman, λex~1064 nm) and visible Raman (vis-
Raman, λex~532 nm) for animal fats. PCA plots showed 
that lard and chicken samples were on the negative semi-
axis of PC1, while beef and lamb samples fell in the positive 
direction of PC1. Besides, PC2 separated lard and chicken, 
as well as beef and lamb. The complete separation of animal 
fats from different species indicates that fat characteristics 
of different animal fats are significantly different and have 
significant potential for species identification analysis. 
Chemometric analysis showed that vis-Raman spectroscopy 
has better discrimination ability for animal fats compared 
with FT-Raman spectroscopy.
Our study is related to the possibility of using PCA in the 
analysis of Raman spectra of meat raw material (fat) samples 
in order to visualize the results and obtain data for assessing 
and comparing fatty acid (FA) profiles of pigs of different 
breeds.

OBJECTS AND METHODS

Сhilled (4±2 °С) samples of adipose tissue (back fat) of 
pigs of three different breeds Altai (Sample 1, n=3), Duroc 
(Sample 2, n=3) and Livni (Sample 3, n=3) obtained on pig 
slaughter lines at enterprises in Moscow, Barnaul, and Livny 
were the objects.
All pigs were raised using standardized Russian technologies. 
Samples were obtained from animals weighing 110±10 kg 24 
hours after slaughter. Sampling of 5x5 cm in size and depth 
from the surface of subcutaneous fat to the muscle layer was 
carried out between the 10-th and 11-th ribs. At least three 
copies of each sample were taken from one animal, and the 
average value was used for further data processing.
The samples were packed in plastic containers and 
transported at 6±2ºС to the laboratory. The samples were 
analyzed within 24 hours from the moment of sampling. Six 
pieces of no more than 10×10×5 mm in size were selected 
from each sample for further analysis. In accordance with 
Olsen’s data (2020), we did not perform preliminary sample 
preparation, since they showed the possibility of predicting 
fatty acid regions based on spectra measured directly in 
adipose tissue.
Spectra were made on the Renishaw inVia Reflex confocal 
Raman dispersion spectrometer (Renishaw plc, Wotton-
under-Edge, UK) using a 785 nm laser.
The spectrometer was calibrated before each study by 
recording the Raman spectrum of a silicon crystal wafer at 
520 cm-1 (exposure time 1 s, laser power 10 mW, 1 scan). 
A lens with a magnification of L50× power was used to 
focus the laser on the surface of the pieces. Spectra were 
collected at 100 mW laser power, exposure time of 10 s, 
3 accumulations. At least 6 spectra were measured from 
different points on each piece of the sample. Measurements 
were recorded in the range of 800-1800 cm-1. Laser power and 
integration time were optimized to avoid photodegradation. 
All spectral analysis and pre-processing (cosmic ray 
removal, baseline correction using intelligent polynomial 
algorithms, smoothing using the Savitzky-Golay algorithm, 
normalization (up to 1000)) were performed using Renishaw 
WiRE 5.2 (Renishaw plc, Wotton-under-Edge, UK) software.
The data are a m×n matrix, where m is the number of 
samples, n is the number of points in the spectrum.
The principal component method represents the data (X 
matrix) as a set of linearly independent vectors in a new space. 
These vectors are called principal components. According to 
(Pomeranzev, 2008), X matrix can be decomposed into two 
matrices of significantly smaller dimensions.
  
                           X=TPt                               (1)
where  is projection matrix of points onto principal 
components (score matrix);
 is transpose of a matrix consisting of principal components 
in old coordinates (loading matrix).
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In this case, the score matrix () has almost all the information 
about the spectral data despite the fact that it has a smaller 
dimension relative to X matrix.
Each of the principal components is responsible for some 
hidden parameter characterizing the data, and the older 
the principal component, the greater the percentage of 
information about the original system it is responsible for.
To determine the practicability of reducing the dimensionality 
of the data (i.e., compressing them) with significant results 
without losing the original information and assessing the 
equality of the variances of several samples, the Bartlett’s 
test of sphericity was calculated. If the criterion value is less 
than 0.05, factor analysis is acceptable. The criterion was 
calculated using the formula (Bartlett, 1937):

                                  
 

|AA| is determinant of the reproduced correlation matrix;
 is determinant of the original correlation matrix;
 is number of variables;
 is number of identified common factors;
 is number of objects of study.
The number of significant principal components was 
determined using the Kaiser (Kaiser, 1960) and Cattell’s scree 
test (Cattell, 1966) (see figure 2).
Values greater than one (the dotted line on the graph) are 
considered “significant” in PCA.

Fig. 2: Cattell’s scree test diagram

The Kaiser–Meyer–Olkin criterion shows how suitable the 
data is for factor analysis. If the criterion values are in the 
range from 0.8 to 1, then the data fits best.
    

                                                                                      r_
ij=R(Xi,Xj ) is Pearson correlation.
Data processing by the PCA method (Pomeranzev, 2008; 
Rodionova et al. 2021) was carried out in the R Studio 
(developer R-Tools Technology) environment in the R 
programming language with the inclusion of libraries 
tidyverse, ggrepel, ggplot2, factoextra, pls, nipals (Mastickij 
and Shitikov, 2015; Kabacoff, 2022). R software is a freely 
distributed cross-platform software tool used for statistical 
calculations and data visualization. R distributions are 
available on websites The Comprehensive R Archive Network.
Statistical processing of the obtained results of Raman 
spectra intensity was carried out in the MS Excel spreadsheet 
processor at a significance level of 0.05. The data are presented 
as the mean value and standard deviation.
To determine the reliability of differences in mean values, 
non-parametric test Kruskal-Wallis was used using the 
Dunn’s test. The probability of 0.05 was chosen as a significant 
level.

RESULTS AND DISCUSSION

Fatty acid proportions of 1) Altai backfat: ΣUFA/ΣMUFA 
= 1.83±0.23; ΣUFA/ΣPUFA = 2.21±0.63; ΣMUFA/ΣPUFA 
= 1.21±0.21; ΣSFA/ΣUFA = 0.59±0.04; 2) Duroc backfat 
ΣUFA/ΣMUFA = 1.31±0.19; ΣUFA/ΣPUFA = 4.26±0.53; 
ΣMUFA/ΣPUFA = 3.26±0.42; ΣSFA/ΣUFA = 0.78±0.08; 3) 
Livni backfat ΣUFA/ΣMUFA = 1.22±0.18; ΣUFA/ΣPUFA 
= 5.49±0.67; ΣMUFA/ΣPUFA = 4.48±0.59; ΣSFA/ΣUFA = 
0.66±0.09.
Fatty acid profiles were obtained in the range of 800-1800 
cm-1 and contained distinct spectral signatures. The obtained 
Raman spectra of the samples are shown in figure 3

a)

|AA| is determinant of the reproduced correlation matrix;
|R| is determinant of the original correlation matrix;
n is number of variables;
m is number of identified common factors;
N is number of objects of study.
The number of significant principal components was deter-
mined using the Kaiser (Kaiser, 1960) and Cattell's scree test 
(Cattell, 1966) (see figure 2).
Values greater than one (the dotted line on the graph) are 
considered “significant” in PCA.



5

                                                                                             J. Meat Sci. 2025, 20(1)

 

Fig. 3: Raman spectra of the samples in the range 800-1800 cm-1: a) Sample 1; b) Sample 2; c) Sample 3

b)

c)

Some blur of the spectra is explained by the fact that each of 
figures 3 shows 5 spectra from one sample.
Based on the analyzed variables, the data in the range 
between 700 cm-1 and 1800 cm-1 were selected, where peaks 
associated with lipids are contained. All the obtained spectra 
showed identical signals, the characteristics of which are 
given in the works (Saleem et al. 2021; Berhe et al. 2016; 
Robert et al. 2020; Pchelkina et al. 2022; Czamara et al. 2014), 
differing only in their intensity (Table 1). Samples 1 and 3 
were characterized by a more intense signal 868 cm-1 (С-С 
stretching) compared to Sample 3, signal 970 cm-1 (=С-Н 
out-of-plane bаnd cis isomer) in Samples 2 and 3 did not 
statistically differ in its intensity (P<0.05), and in Sample 1 
it was characterized by a value 1.5 times greater. The peak 
at 1061 cm-1 (С-С aliphatic out-of-phase stretching) was 
significantly different between Samples 1 and 3, and 1080 

cm-1 (С-С aliphatic stretching) showed no statistically 
significant differences between all three samples (P<0.05). 
The signal at 1127 cm-1 (С-С aliphatic in-phase stretching) 
was the least intense in Sample 1, and was the most intense 
in Sample 3. The signal at 1266 cm-1 (=С-Н symmetric rock 
cis isomer) was 1.4 times more intense in Sample 1 than in 
Samples 2 and 3 (P<0.05), and 1300 cm-1 (CH2 twisting) 
was statistically significantly different between Samples 1 
and 3 (P<0.05). The signals at 1368 cm-1 (CH3 symmetric 
deformation (umbrella)) and 1438 cm-1 (CH2 symmetric 
deformation (scissoring)) and 1740 cm-1 (С=О stretching) 
did not show statistically significant differences in intensity 
between all three samples (P<0.05). The signal at 1650 cm-1 
(С=С stretching) was 1.2 times more intense in Sample 1 
than in Samples 2 and 3.

Table 1. Raman spectra average intensity of samples tested

Band
number

Band position 
(сm−1)

Sample 1
Altai

Sample 2
Duroc

Sample 3
Livni

Box plots

1 868

100.25±2.78a-b

pa-b=0.001 (yes)
pa-c=1 (no)
pb-c=0.001 (yes)

91.36±3.56a-b,b-c 99.23±5.77b-c
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Band
number

Band position 
(сm−1)

Sample 1
Altai

Sample 2
Duroc

Sample 3
Livni

Box plots

2 970

78.00±6.52a-b,a-c

pa-b=0 (yes)
pa-c=0.013 (yes)
pb-c=0.16 (no)

46.54±7.29a-b 51.67±6.12a-c

3 1061

389.43±14.10a-b,a-c

pa-b=0.014 (yes)
pa-c=0 (yes)
pb-c=0.44 (no)

409.79±8.64a-b 434.84±19.44a-c

4 1080

288.77±13.33a-b

pa-b=0.001 (yes)
pa-c=0.081 (no)
pb-c=0.59 (no)

254.53±12.74a-b 265.04±15.74

5 1127

230.46±18.96a-b,a-c

pa-b=0.022 (yes)
pa-c=0 (yes)
pb-c=0.06 (no)

274.46±11.86a-b 310.54±17.74a-b,a-c

6 1263-1266

322.23±23.02a-b,a-c

pa-b=0 (yes)
pa-c=0.003 (yes)
pb-c=0.86 (no)

232.71±19.40a-b 241.12±21.02a-c

7 1300-1306

652.74±20.70a-b,a-c

pa-b=0.008 (yes)
pa-c=0.001 (yes)
pb-c=1 (no)

681.19±9.12a-b 699.53±19.04a-c

8 1368

54.58±3.52a-c

pa-b=0.28 (no)
pa-c=0.044 (yes)
pb-c=1 (no)

53.79±1.77 51.49±9.28a-c
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Band
number

Band position 
(сm−1)

Sample 1
Altai

Sample 2
Duroc

Sample 3
Livni

Box plots

9 1438

1009.48±1.78a-b

pa-b=0 (yes)
pa-c=0.5 (no)
pb-c=1 (no)

1001.81±2.79a-b 1007.73±6.95

10
1650-1655-
1657

645.71±11.11a-b,a-c

pa-b=0(yes)
pa-c=0.003 (yes)
pb-c=0.79 (no)

503.61±15,03a-b 511.78±11.72a-c

11 1740

141.11±4.96a-b

pa-b=0.002 (yes)
pa-c=0.17 (no)
pb-c=0.44 (no)

136.03±2,64a-b 137.70±4.24

a-b, b-c, a-c are significant differences between the samples 
of Altai, Duroc, Livni (within one line), non-parametric test 
Kruskal-Wallis, Dunn’s test  (P<0.05)

Analysis of data in Table 1 and figure 1 showed the following.
The greatest interbreed differences are observed in the 
intensity of signals 970, 1061 and 1127 cm-1. In all 
spectra, the fatty acid profile of the back fat of Altai pigs 
significantly differs from the back fat of Livni and Duroc 
pigs. The exception is the intensity peak 868 cm-1, which 
characterizes the structure of the carbon chain of fatty acids 
with a carboxyl group. The significance of these parameters 
is confirmed by the data in Table 3. Such differences in the 
FA spectra are expected due to the differences between these 
breeds: Altai is a meat breed, and Livni is a meat-lard breed. 
At the same time, Duroc is also positioned as a meat breed, 
but reliable differences in the FA profiles obtained by Raman 

spectroscopy were found between Altai and Duroc. It is 
worth noting that there are no significant differences in the 
peak intensities for the FA profiles of Duroc and Livni pig 
lard, characteristic of the sums of saturated and unsaturated 
FA. The data presented are consistent with the results we 
obtained earlier (Chernukha et al. 2023).
At that, the greatest differences were observed in the intensity 
of peaks 1263-1266 and 1650-1655-1657 cm-1.
Animal fats from Altai pigs gave obvious differences in the 
ratios of peak intensities at 1653/1745 cm-1, while for Duroc 
and Livni the differences were unreliable.
The obtained values of the Bartlett’s test of sphericity 
(6.12e-6 or 0.00000612, see formula (2) allow performing 
principal component analysis (p-value<0.05), as well as the 
Kaiser–Meyer–Olkin criterion (0.809, see formula (3). As 
a result of original matrix processing (17×12), 12 principal 
components were formed (Table 2).

Table 2. Characteristics of importance of the principal components

РС1 РС2 РС3 РС4 РС5 РС6 РС7 РС8 РС9 РС10 РС11 РС12
Standard deviation* 2.59 1.35 1.31 0.79 0.72 0.61 0.40 0.23 0.09 0.08 0.47 0.02
Proportion of variance** 0.56 0.15 0.14 0.05 0.04 0.03 0.01 0.0043 0.0007 0.0006 0.0002 0.0000
Cumulative Proportion*** 0.56 0.71 0.85 0.91 0.95 0.98 0.9942 0.9985 0.9992 0.9998 0.9999 1.0000

* mean-square deviation of the principal components; 
** proportion of deviations of the principal components; 
*** proportion of the total variance in the data that explains a certain number of principal components
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With a larger number of components, the variance decreases, 
which is natural. PC1 describes 56% of the variance of the 
original data set, and PC1 and PC2 explain 71% of the 
variance of the original data. For example, seven principal 
components PC1-PC7 describe about 99% of the variance 
from the original data set, etc.
The number of “significant” principal components was 
determined using the Cattell’s scree test - these are PC1, PC2 
and PC3.
Table 3 presents the weights of the “significant” principal 
components with which the “old” variables are included 
in the “new” ones. New variables are calculated as the sum 
of the products of the weight values by the corresponding 
criterion (see formula (1).

Table 3. Weight coefficients of new variables

Spectrum signal (cm-1) РС1 РС2 РС3

868 -0.1066 0.5895 -0.1787

970 -0.3258 0.2419 -0.2049

1061 0.3191 0.3405 -0.2004

1080 -0.3237 0.0546 -0.2236

1127 0.3396 0.2899 -0.1664
1266 -0.3580 0.1351 -0.1856

1300 0.3228 0.2258 -0.3239

1418 0.1845 0.3610 0.3393
1368 0.0514 -0.2345 -0.6631

1438 -0.2492 0.3604 0.3152

1650 -0.3721 0.0764 -0.1199

1740 -0.3017 0.0284 -0.0193

Component stability testing was done using Cosine 
Similarity. As a result, average cosine similarity value/ 
stability coefficient is 0.92, closer to 1 (one), which means 
the model is stable.

In PC2, signal 868 cm-1 (weight coefficient 0.5895) 
significantly predominates, which characterizes the C-C 
interaction, as in PC3, signal 1368 cm-1 (weight coefficient 
0.6631), which shows the number of functional groups CH3. 
Considering that the structural formula of all fatty acids 
includes carbon-carbon bonds and methyl groups (CH3), it 
can be argued that the main functional difference is carried 
by the first principal component.
The values obtained from the spectrum signals 1650 cm-1 
(-0.3721), 1266 cm-1 (-0.3580), showing unsaturated bonds 
C=C and =C-H, are included in PC1 with the highest 
weighting coefficients. Olsen (2007) attributes the peaks 
in 1263/1266, 1650/1655 cm-1 regions to double bonds. 
These types of bonds are present in off-peak fatty acids. In 

combination with the second or third principal components, 
it determines the specificity of the FA profile. In our example, 
the proportion of unsaturated FAs predominates in Sample 
1 – Altai (1298.45), followed by Sample 3 – Livni (1211.31) 
and Sample 2 – Duroc (1184.8). The intensity of peaks at 970 
cm-1 was recorded to be 1.7 and 1.5 times higher in Altai lard, 
compared to the lard of Duroc and Livni pigs, respectively. 
This trend clearly correlated with the previously obtained 
UFA distribution in the lard of the pigs of the studied breeds 
(Chernukha et al. 2023), calculated from the FA profile 
obtained by the GLC method 56.07 ± 2.93%; 60.18 ± 3.91% 
and 62.82 ± 1.68% for the Duroc, Livni, and Altai breeds, 
respectively.
The value of 1650/1655 cm-1 signal, according to Gómez- 
Mascaraque (2020), is related to the concentration of alpha-
linolenic acid. This value, according to the Table 1 data, is 
maximum in the samples of lard of the Altai breed of pigs 
and is approximately equal in the lard of the Duroc and Livni 
breeds of pigs. This is consistent with the GC data showing 
the content of alpha-linolenic FA 1.01 ± 0.07, 0.60 ± 0.32 and 
0.60 ± 0.15%, which we obtained earlier (Chernukha et al. 
2023).
These differences can also be explained not only by differences 
in the ratio of saturated/unsaturated FAs, but also by the 
prevalence of individual ones, differing in spatial structure. 
This assumption is consistent with the data (Li-Chan et 
al. 1994). These researchers, using continuous gradient 
temperature Raman spectroscopy (GTRS), showed the 
possibility of identifying and differentiating certain regions 
of the carbon chain. Previously, it was shown that Raman 
spectroscopy can be used to study the structure of proteins 
and peptides, including primary and secondary structures, 
extensions, and side bonds. In particular, of aliphatic CH 
groups (Chernukha et al. 2023).
Signal 970 cm-1, responsible for unsaturated bonds of fatty 
acids, enters PC1 and PC2 with weight coefficients of 
different (opposite) signs – -0.3258 and 0.2419, respectively.
С-С interaction is also described by signal 1127 cm-1. In our 
case, this signal enters PC1 and PC2 with the same signs of 
weight coefficients (0,3396 и 0,2899) (Saleem et al. 2021; 
Broadhurst et al. 2018).
The smallest values of weight coefficients are highlighted in 
red in the Table 3.
Figure 4 shows the zones of the FA profiles of samples formed 
by the PCA method.
In figure 4, we observe that points of Samples 1 and Samples 
3 are grouped together in all three graphs (a,b,c). All graphs 
show a tightly grouped set of points of Sample 3. The points 
of Sample 2 are distributed chaotically in all graphs, and 
only in figure 4a they form a group, which is highlighted 
by an ellipse of the corresponding color. The grouping 
of points of Samples 2 is noted only in figure 4a. At that, 
points corresponding to Sample 1 are in II and III quadrants 
(positive and negative according to PC1 and negative 
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according to PC2), those corresponding to Sample 3 are in 
III and IV quadrants (negative according to PC1 and positive 
and negative according to PC2), and those corresponding to 
Sample 2 are in all four quadrants. There is an overlap of the 
area of points of Sample 1 with the area of Samples 2. Points 
of Sample 1 form a group on each graph, but the points are 

not located close to each other. This grouping is probably 
due to the different breeds of pigs from which samples were 
taken for the study and, consequently, to different quality 
characteristics of lard, which was previously confirmed in 
the work(Motoyama et al. 2010).

a)

b)

c)
Fig. 4: Dot plot of the dependencies of the “significant” principal components and confidence regions (unhatched ellipse): a) 
PC1 vs. PC2; b) PC2 vs. PC3; c) PC1 vs. PC3 (red – Sample 1, green – Sample 2, blue – Sample 3)
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 Despite the slight overlap, the PCA score plot (see figure 
4a) shows that the two Samples are clearly separated from 
each other. Sample 1 spectra were clustered in negative PC2 
space (II and III quadrants), while Sample 3 spectra were 
clustered in negative PC1 space (III and IV quadrants). 
Sample 2 spectra did not tend to cluster and were located in 
all PC1 and PC2 spaces (I, II, III and IV quadrants), which 
may indicate that there are no significant differences in the 
obtained values.
Spectra of Sample 1 in the graph PC2 vs. PC3 (see figure 4b) 
are grouped in the positive and negative space of PC2 (I and 
II quadrants), positive and negative space of PC3 (I, III and 
IV quadrants), and spectra of Sample 3 are grouped in the 
positive and negative space of PC2 (II and III quadrants) and 
negative space of PC3 (II and III quadrants).
In the figure 4c, spectra of Sample 1 are grouped in the 
negative space of PC1 and the positive and negative space 
of PC3, which corresponds to II and III quadrants on the 
coordinate plane. Spectra of Sample 3 – in the positive and 
negative space of PC1 (I, III and IV quadrants) and the 

positive and negative space of PC3 (III and IV quadrants).
Besides, a grouping of spectral signal blocks was revealed (see 
figure 5 a,b,c). Group 1 (figure 5a) united signals 1080, 1266, 
1438, 1650 and 1740 cm-1 on all graphs (see figure 5 a,b,c). 
Group 2 (highlighted with a green ellipse) – 1061, 1127, 1300 
cm-1. Signals of spectra 970, 868, 1418 and 1368 cm-1 are not 
included in any groups, or in neither of them. At that, peak 
868 cm-1 is located in II quadrant, which corresponds to the 
positive space of PC1 and the negative space of PC2. Peak 
1368 cm-1 is located in IV quadrant, which corresponds to 
the negative space of PC1 and the positive space of PC2.
In the graph PC1 vs. PC3 (figure 5b), signals of spectra 868, 
1368, 1418 and 1438 cm-1 do not belong to any of the formed 
groups.
In the graph PC2 vs. PC3 (figure 5c), peak 868 cm-1 is located 
in IV quadrant, and peak 1368 cm-1 is in III quadrant, which 
corresponds to the negative space in both cases of PC2. 
However, in PC3 space, peak 868 cm-1 is positive, and peak 
1368 cm-1 is negative.

a)

b)

c)
Fig. 5: Graph of variables (spectra) in coordinates of significant principal components: a) PC1 vs. PC2; b) PC2 vs. PC3; c) 
PC1 vs. PC3
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In all graphs, spectra 1061, 1127 and 1300 cm-1 form a 
separate cluster of FA groups. These data are similar to the 
results of Szykuła (2023), who suggested that these spectra 
are responsible for the interspecies identification of pork.
Of further note is the presence of a peak in region 1410-
1418 cm-1 in all samples (see figure 6), which, according to 

Motoyama (2010), is a unique marker of pork and is detected 
at a pork concentration in a mixture of more than 50%.
At the same time, Indastri (2010) showed that the presence 
of trans c18:3 ω3t, с20:3 ω3t and с20:2 ω6 FA is a marker of 
pork, and docosenoic (erucic) FA is a marker of beef.

Sample 1
Altai

Sample 2
Duroc

Sample 3
Livni

Fig. 6: Fragments of Raman spectra of fat profiles. The sector with wavelength 1410-1420 cm-1 is highlighted in an oval

Thus, spectra of meat (fat) raw material samples can be 
divided into qualitative groups, breeds, and classified.
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CONCLUSION

Raman spectra of pork lard of three different breeds were 
compared using PCA. The contribution of “significant” 
principal components to the total variance is 85%. The 
use of PCA to Raman spectral signals allowed us to: 1) 
remove unnecessary “disturbances” and identify the main 
patterns; 2) reduce the number of variables that carry little 
information. As a result of transformation, we reduced 
the matrix of the original data (17×12) to 3 “significant” 
variables for all signals of the studied spectra (12×3); 3) 
identify the most important spectral signals that explain the 
largest part of the data variability; 4) show the differences 
between animals of the same species but different breeds; 
5) confirm the presence of pig-specific signals - wavelength 
1410-1420 cm-1; 6) determine the differences between the 

data, which is necessary for classification and clustering of 
the studied samples.
The advantage of PCA is that it is a mathematical analytical 
tool that allows us to identify natural changes in a large data 
set without prior knowledge of this data structure. Thus, 
using PCA analysis, we have demonstrated the possibility 
of comparative evaluation of Raman profiles of pork lard, 
identifying the most characteristic signal values for fat and 
assessing the quality of fat from the standpoint of the ratio of 
saturated and unsaturated FAs.
Visualization of the data showed clearly samples divided 
into clusters corresponding to breeds. This confirms the 
significant differences in fat composition between samples. 
Samples that fell out of clusters indicated anomalies that 
may be related to individual variations. 
This will be studied further.
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