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ABSTRACT

Meat is a nutrient-dense food, and its quality depends on various factors that range from pre- to post-harvest. Any
alteration in the conversion of muscle to meat can impact product quality and consumer acceptance. Hence, elucidating
the factors that can influence meat quality such as tenderness, water holding capacity, flavor, and color are essential
to understand quality defects, limit meat wastage, and ensure consumer satisfaction. The aspects involved in meat
quality changes are complex and interrelated. Hence, traditional wet-laboratory techniques may not be able to
provide global changes in biomolecular interactions. In recent years, a systems biology approach utilizing genomics,
proteomics, transcriptomics, and metabolomics has been incorporated into basic meat science research to understand
the mechanistic basis of meat quality and the potential development of biomarkers. The overall goal of this review
is to give an outline of various omics techniques and their application in meat science research.
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Fig. 1 Schematic representation of different biochemical processes
and its impact on meat quality

Fig. 2 Usefulness of omics technology in meat quality studies

INTRODUCTION

With the growing demand for high-value animal proteins,

there is increased pressure on the livestock industry to produce

more meat. Although socio-demographic and emphasis on

environmental aspects has increased in recent years, limiting

food waste remains a top priority to feed the growing

population. Meat is a nutrient-dense food, and it is estimated

in the United States, Canada, Australia, and New Zealand,

approximately 22% of total meat and poultry produced is

discarded annually (Gunders, 2012). Meat is a highly

perishable commodity; therefore, understanding the

biochemical basis of quality changes is critical to limit meat

wastage without compromising consumer expectation on

quality (Ramanathan et al., 2020). Meat is biochemically active

(Fig. 1), and its properties depend on the cascade of reactions

that occur before and after animal harvest. Protein, metabolites,

DNA, and fatty acids expression can influence meat quality,

and its functions are interrelated. Therefore, traditional

laboratory techniques may not provide insights into global

changes in biomolecules.
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Omics techniques are interdisciplinary and apply concepts
in various fields such as biology, computer science, and
engineering. Although omics techniques will not provide a
definite answer to a question, a discovery-driven approach
helps to develop hypotheses to a complex problem (Fig. 2).
This review aims to discuss important meat quality attributes
and how omics technology can be used to understand meat
quality changes.

FACTORS AFFECTING MEAT QUALITY

Immediately after slaughter, the metabolism changes from
aerobic to anaerobic (Ouali et al., 2013). The approximate
postmortem muscle pH of depending on species ranges from
5.6 to 5.8. Any alteration in pH drop can influence meat quality
(English et al., 2016). More specifically, the amount of glycogen
in muscles prior to slaughter and post-harvest factors such as
storage temperature can influence the activity of enzymes and
associated formation of metabolites. pH is an inherent
biochemical factor that can affect water holding capacity,
tenderness, and color (Hughes et al., 2019).

IMPORTANT MEAT QUALITY ATTRIBUTES

Tenderness and flavor: Tenderness has been valued as the
most important factor influencing meat quality, as has been
deemed critical for consumer repurchase decisions
(Bailey,1972; Maltin, 2003). One of the essential factors that
influence tenderness is the age of animals. In several studies,
consumers are willing to pay more for steaks that are
guaranteed tender (Lusk et al., 2001; Miller et al., 2001; Feuz et

., 2004).  Lusk et al., (2001) reported that consumers were
willing to pay an average of $2.71/kg more to purchase a
“tender” rather than a “tough” steak. Additionally, Miller et
al., (2001) estimated that consumers were willing to pay a
premium ranging from $0.59/kg to $1.23/kg for steaks in the
tender category as opposed to the intermediate to tough
categories. Feuz et al., (2004) reported that with every kg
increase in WBSF, a consumer’s willingness to pay decreased
by $0.24/pound. This follows the trend of previously
mentioned studies that concluded as tenderness decreased, a
consumer’s willingness to pay also decreased. Moreover, Lusk
et al., (2001) determined that sharing information about the
predicted tenderness of a product (i.e., on the label)
significantly impacts the consumer ’s preferences and
willingness-to-pay. Consumers are willing to pay more for a
product that can be guaranteed tender. This is a step in the
right direction for producers to have an incentive to produce
products that can be guaranteed tender. The United States
Department of Agriculture (USDA) has a verified program
“USDA Tender” where a commercial facility can randomly
test lots of beef and if the sample selected is 4.4 kg or less when

tested by WBSF it can be marketed with the official USDA
Tender shield (ASTM F2925-11). With more research and
producers willing to pay for the WBSF testing this program
can add a vital incentive for ranchers to produce more tender
beef.

There are several ways to predict tenderness. As mentioned
previously, WBSF can be used to determine the kilograms of
force required to shear through a steak. However, this process
required the steaks to be sacrificed from the supply chain to
be tested, and the process is more than 24 h from cook time to
shearing. Another method that is commonly used it Slice Shear
Force (SSF). The WBSF and SSF, while viable options in a
research setting, are not practical for industry. Instead, vast
research is being conducted to discover a non-invasive method
of sorting carcasses in commercial facilities. The most common
methods being research are imaging technologies, since
cameras are currently used in grading U.S. beef, the most
obvious means of adding another tool would be to the already
existing cameras. More specifically, Naganathan et al., (2008)
concluded that near-infrared hyperspectral imaging could
be used to predict beef tenderness accurately. Hyperspectral
imaging uses more wavelengths than the traditional red, blue,
green to analyze each pixel of the image. By analyzing these
pixels, the research can predict what is present and how much
of it is present. This process has been proven at a 96.4% accuracy
in a research setting for sorting steaks into three tenderness
categories; tender, intermediate, and tough (Naganathan et
al. 2008). Further studies were conducted to determine near-
infrared hyperspectral imaging as a reliable source to sort
carcasses based on tenderness (Elmasry et al., 2012).

Some important things to consider when measuring
tenderness are the extrinsic and intrinsic factors influencing
tenderness. Intrinsic factors would include the age, sex, breed,
and genetics of the animal, while the extrinsic factors would
include the pre mortem stress/handling, the slaughter process,
and postmortem handling. While it is hard to control the
intrinsic factors on an entire lot of cattle, it is easier to limit the
variability in the extrinsic factors. Many studies have been
conducted to prove the current techniques of the industry are
the most effective. For example, the chilling process of
carcasses has been improved to limit the occurrence of cold
shortening, which is a major contributor to tough beef. The
intrinsic factors are more commonly evaluated when
tenderness measurements are taken.

The amount of collagen in a product has a significant impact
on the shear force values. As animal ages, the amount of
collagen cross-linking increases (Bailey, 1989). The sex of the
animal also has some implications in the amount of collagen
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cross-linking, and its effect on tenderness. Castrated males
typically have a higher collagen turn-over rate, so less mature
cross-links, and therefore are typically more tender (Bailey,
1989). While the genetics of the animal is still largely unknown,
there is some idea about how the breed of an animal affects the
collagen driven tenderness. Many of the smaller earlier
maturing breeds, apart from Angus, tend to have higher
concentrations of mature cross-links upon harvest. While the
larger later-maturing breeds, including Charolais and
Limousin, tend to have a lower percentage of mature collagen
cross-links and therefore are typically more tender
(Christensen et al. 2011).

Water holding capacity: The ability of postmortem muscle
to hold water with the application of external force is an
important quality attribute. Lower water holding capacity can
lead to greater drip loss and can affect product quality. Mainly
protein components of meat hold water; hence, any changes
in protein can influence water holding capacity. Omics can
study the relationship with proteins responsible for water
holding capacity and also to understand proteolysis.

Water holding capacity can be measured through a variety of
methods to determine total moisture, free water, and bound
water. Total water content can be determined by drying with
a microwave oven or a vacuum oven. These methods include
heat to evaporate the water evaluating the weight of the sample
before and after drying. Near-infrared (NIR) technology is an
AOAC-approved rapid method to determine percent
moisture, and this technology is found in the FoodScan FOSS
equipment (FoodScan Lab Analyzer, Serial No. 91753206; Foss,
NIRsystem Inc.; Slangerupgrade, Denmark). Using the
FoodScan, the measurements are rapid and easy to obtain.
Near-infrared measures the infrared light reflected from the
sample by the molecular vibrations of water. The percent
moisture is determined by the difference between the wet
and dry sample weights divided by the wet sample weight.
Wierbicki and Deatherage (1958) established a method to
determine water holding capacity by determining total
moisture, free water, and bound water. There has also been a
new procedure and instrument for measuring the water
holding capacity of fresh meat and includes a new instrument
and different parameters as an improvement upon the filter
paper press method. Barbera (2019) measured raw meat total
moisture content from samples of longissimus thoracis. For
cooked meat, cooling loss, and residual water was obtained
by compression to assist in measuring the hardness (Barbera,
2019).

Unlike fresh meats, processed meat systems can have a variety
of different ingredients added to the food matrix, which can

greatly affect the water holding capacity. Many processed types
of meat products can be injected with brine or placed in a
marinade, which can be utilized to improve the water holding
capacity of the meat system dependent upon their ingredients.
It has been previously seen that electrical conductivity of salt
solutions of sodium chloride, sodium bicarbonate, and
sodium tripolyphosphate can be utilized as parameters of
predicting the WHC of marinated chicken breast meat
(Kaewthong and Wattanachant, 2018). According to the
American Meat Science Association, starches are no longer
just used for water binding and retention purposes; while
they do fulfill these roles, the starches can play a large part in
consistent with juiciness, tenderness, texture, and improve
the yields and hold times, all things which were happening
before, but now being studied at a more precise level, which
is a true implication of the necessity of a well-balanced water
holding capacity level in a meat system (Swenson and Katen,
2004).

Meat color: Meat color plays a role in the purchasing decisions
in countries where meat is marketed as fresh (Mancini and
Hunt, 2005; Carpenter et al. 2001). Depending on the
concentration of myoglobin, meat color can range from pink
to dark-red. A bright cherry-red color is preferred by
consumers, and any deviation from a bright-red color can
leads to less consumer acceptance or discounted at the
processing plant (Carpenter et al. 2001). Dark-cutting beef is
an example of a color deviation, which has a worldwide
occurrence. In the United States, approximately 1.9% of
carcasses are graded as dark-cutting costing the industry $91-
251 million based on the 2016 National Beef Quality Audit,
while in Canada, according to the 2016/2017 National Beef
Quality Audit, dark-cutting carcasses cost the cattle sector $10.6
million (https://www.beefresearch.ca/files/pdf/NBQA-
Carcass-Audit-Mar-27-2018-F.pdf). Meat color is primarily due
to myoglobin, and depending on the state of myoglobin, it
can impart bright cherry red (due to oxymyoglobin), dark-red
(due to deoxymyoglobin), or brown (due to metmyoglobin).
Meat discoloration is inevitable, but, understanding the factors
that can limit discoloration such as maintaining cold chain
during storage or transport and limiting oxygen content can
extend color life (Faustman et al. 2010).

The American Meat Science Association Color Guide has
provided detailed instructions about color measurements and
precautions (AMSA, 2012). Meat color can be evaluated
through instrumental and visual panel approaches. Both
benchtop and handheld spectrophotometers can be used for
color evaluation. One of the most common ways to reporting
color is utilizing the CIE Tristimulus Values (CIE L* a* b*).
The CIE L* values provide for the lightness of the meat product
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on a scale of 0-100 (black-white). From the spectral data from
400 to 700 nm can be used to calculate percent deoxy-, oxy-,
and metmyoglobin. Meat color is determined by two inherent
biochemical characteristics, such as oxygen consumption and
metmyoglobin reducing activity (Tang et al. 2005; Ramanathan
and Mancini, 2018). Oxygen consumption is related to bloom
development, and metmyoglobin reducing activity predicts
color stability. Oxygen consumption is estimated by the
change in deoxy- or oxymyoglobin from pre- to post-anaerobic
conditions allowing for an understanding of mitochondrial
oxygen consumption of the product. Additionally,
metmyoglobin reducing ability can be understood by the
decrease in metmyoglobin through reduction pathways over
time, contributing to the understanding of color stability.

When evaluating meat color, there are several precautions to
consider for instrumental and visual evaluation. The display
case or cooler where the product is being held should not be
on defrost when evaluating meat color to limit the formation
of condensation. The packaging type is an important
consideration as well. The packaging film used should also
be used to standardize the instrument to limit the effects of the
film type and thickness on the reflectance and absorbance. In
modified atmosphere packaging, the meat product has to be
flipped to evaluate the instrumental meat color; therefore, it is
important to limit the accumulation of moisture and fat on
the film surface, which may disrupt color. When evaluating
whole muscle product, care should be taken to limit the
evaluation of high fat or marbling area to better determine the
lean muscle color.

IMPORTANCE OF OMICS IN MEAT SCIENCE
RESEARCH

The term omics refers to a field of study in biology mainly
aimed at collective characterization and quantification of pools
of biological molecules that translated into structures,
function, and dynamics of organs/organisms. Modern omics
techniques mostly utilized in cell biology, biochemistry, and
physiology are currently utilized in meat science research to
understand the molecular mechanisms underlying meat
quality characteristics. Several of these molecular tools more
specifically proteomics, metabolomics, and genomics have
been employed in elucidating molecular mechanisms that
regulate and mediate meat quality traits (Lametsch and
Bendixen, 2001; Sayd et al. 2006; Joseph et al. 2012; Canto et al.
2015).  The other omics tools such as genomics and
metabolomics have also been extensively applied in meat
science research (Andersson et al. 1998; Straadt et al 2014). The
basic differences in omics techniques are summarized in Figure
3 and Table 1. Various studies have successfully utilized omics

techniques to explain variability or meat quality deviations
(Table 2). Further, studies were able to correlate meat quality
attributes to omics findings. Hence it is crucial to report
sampling details and meat quality analysis in published
research.

GENOMICS

Genomics analysis provides information about the
intragenomic interactions in the genome. Although the
genome of an organism is relatively constant, genomics studies
have not revealed a consistent genetic marker with regards to
meat quality. Genomics is the study of all genes in an animal
or individual. This includes studying the structure and
function of genes that affect a quality trait and understand the
evolutionary relationship. Gene function determines RNA
(transcriptomics), protein (proteomics), and metabolites
(metabolomics) formation. The practical application of
studying gene may be to develop biomarkers for meat quality
traits by sampling animals either before death or postmortem.
One of the practical implications is the identification of RYR1
gene mutation (Fujii et al. 1991) and associated effects in the
development of the pale soft exudative condition.

Each trait is polygenic, hence influenced by various genes.
Therefore studying one gene may not provide meaningful
information. One of the approaches used in genomics is to
identify variations within the DNA sequence among different
animals and determine their significance to a meat quality
trait. The most common type of genetic variation is known as
a single nucleotide polymorphism or SNP. These small
differences may help predict a quality variation such as
tenderness or pH. The human genome project and associated
developments have paved the way to sequence the entire
genome in a species. Genome-wide association studies are a
relatively new way to identify genes involved in meat quality
traits. Each study can look at thousands of SNPs at the same
time and helps researchers to pinpoint genes that may
contribute to a specific meat quality defects. The genomic
analysis includes extraction of DNA from meat, followed by
enzymatic digestion to cut DNA into smaller strands. These
strands are later incubated with primers to promote binding
with complementary bases. With the use of ChiP-sequencing
(chromatin immunoprecipitation), several genes can be
identified in a single run. This can also generate big data;
hence computational software is used to analyze gene
sequences. Several genes associated with a quality trait;
however, some genes may not be functional. There is an
increased interest in quantifying mRNA. Hence, researchers
are quantifying mRNA (transcriptomics) to understand
quality changes.

J Meat Sci. June 2020, 15 (1)
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Table 1: Summary of different omics approaches and application in Meat Science research

Omics
technology

Proteomics
(the study of
proteins)

Metabolomics
(study
metabolites)

Genomics

(the study of
DNA)

Transcriptomics
(the study of
RNA)

Lipidomics
(the study of
lipids)

Microbiome
(characterize all
bacteria, fungi,
or other
microorganisms
in meat)

Application in
Meat Sci

To study mechanistic basis
for tenderness. Use to
determine biomarker
tender meat

To study muscle-specific
differences in color stability

To study differences in
water holding capacity

To characterize the binding
of lipid oxidation products
on protein such as
myoglobin

pH, water holding capacity,
tenderness, and flavor

To characterize muscle-
specific differences in
glycolytic and tricarboxylic
acid substrate utilization

To determine the genome-
wide association of genes
associated with tenderness,
myoglobin concentration,
pHl

To study RNA expression
associated with protein

To characterize various
types of lipids

To characterize
microorganism by
identifying DNA

Platform

Gel-based (1D or 2D
gel)

Gel-free

Gas chromatography
based-metabolomics.
Extraction of
metabolites in polar
and non-polar
solvents Liquid
chromatography
based metabolomics

NMR-based
metabolomics

Sequence DNA using
various platforms such
as Illumina. DNA
microarray chips help
to characterize a large
number of genes

RNA-seq

Extraction of lipids
followed by mass
s p e c t r o m e t r y
characterization

Extraction of DNA
and matching with
library

Advantages

Proteins with specific
isoelectric points and
molecular weights can
be targeted.

Wider coverage of
proteins identified,
easier comparison of
multiple treatments

Sensitive, a large
number of compounds
can be identified

Sensitive

Can determine the
concentration, no need
to process samples

Provide useful
information about how
genes or possible
mutation can influence
meat quality

Helps to characterize
RNA changes
associated with meat
quality

Helps to characterize all
types of lipids in a
biological system

Helps to get a snapshot
of all microbes in a
biological system

Limitations

Low concentration
proteins cannot be
detected;
underrepresentation of
extreme acid/basic
proteins; labor-intensive

Expensive; difficult to
identify proteolysis.

Only volatile compounds
are identified, large
molecules weight
compounds are not
identified, not able to
quantify metabolites

Less sensitivity

Various factors, such as
epigenetics and
environment, influence
outcomes.

Need to collect the
samples very quickly

Need bioinformatics
expertise to characterize
individual fatty acids

Validation is required.

J Meat Sci. June 2020, 15 (1)
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Table 2: Application of omics techniques in meat quiality research

Fig. 3 Overview of different steps involved in different omics technology

Technique

Proteomics

Metabolomics

Genomics

Application

Muscle-specific differences in color stability

To understand the biochemical basis of dark-cutting
beef

To determine the impact of aging on meat color

To study alteration in purified protein – the impact of
lipid oxidation on myoglobin

Effect of aging on tenderness

Impact of muscle type on tenderness

To study pH decline early postmortem

To study the effects of proteins on water holding
capacity

Muscle-specific differences in color stability

To determine the impact of aging on meat color

To differences in tenderness

To study the impact of gene loci on color

To understand marbling in the meat

To study PSE

To determine the relationship between myoglobin
concentration and genomics

Reference

Joseph et al. 2012; Nair, et al. 2018a,b

Mahmood, et al. 2018

Nair et al., 2018ba, b

Naveena et al. 2010;
Suman, et al. 2006

Nair et al. 2019; Paredi et al.  2012

Gagaoua, et al. 2017

Kuttappan et al. 2017

Marino et al. 2014

Abraham et al. 2017; Ma et al., 2017

Mitacek et al., 2019

D’Alessandro et al., 2012

Magalhães et al., 2019

Corominas et al., 2013

Strasburg & Chiang, 2009

Cross et al., 2018

J Meat Sci. June 2020, 15 (1)
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METABOLOMICS

Metabolomics is a systematic analysis of small molecules such
as amino acids, glycolytic/tricarboxylic intermediates, and fatty
acids in a biological system (Fiehn, 2002; Julian, 2004). A real-
time snapshot of metabolite changes in a biological system
can provide various reactions and helps to identify the
ultimate phenotypical changes that happen to cells or tissue
due to changes in environment or gene expression. On the
other hand, metabolomic analyses involve a study of the
entirety of endogenous small molecules (metabolites) within
an organism, organ, biological tissue, or cells (Fiehn and
Weckwerth, 2003). Metabolomic analysis requires the use of
techniques that demand a high level of skill due to the diversity
of chemical properties of the metabolites ( Straadt et al. 2014;
Zhang e t al.2012).

A comprehensive analysis of metabolome using a single
platform may be challenging (Villas-Bôas et al. 2005).
Metabolomics analysis only quantifies approximately 15-30%
of the total metabolites present in a system (Misra et al. 2019).
Thus, a limited amount of information can be generated from
a single omic tool in a stand-alone fashion. The metabolomic
analysis involves the usage of either a single platform or a
combination of platforms to separate molecules. The popular
analytical tools to separate various metabolites are gas
chromatography, liquid chromatography, capillary
electrophoresis, and nuclear magnetic resonance (Baker et al.
2006). The use of mass spectrometry helps to characterize
separated molecules. Hence, a combination of gas
chromatography and liquid chromatography with mass
spectrometry are routinely used in meat science research.
Global metabolomics and targeted metabolomics are two types
of approaches in metabolomics (Kaddurah-Daouk et al. 2008).
In the global approach, the analyst tries to identify and
characterize all the metabolites present in a biological sample,
whereas in the targeted approach, only a specific number or
class of metabolites are studied. Both targeted and non-targeted
approaches include metabolite separation, detection,
quantification, data analysis, and interpretation.

PROTEOMICS

Proteomics is defined as the science of characterizing the entire
sets of proteins expressed in a cell or tissue (Bendixen, 2005).
The venture into proteomic research was driven by the
discovery of post-transcriptional mechanisms (Chevalier,
2010), which revealed that direct measurement of protein
expression could provide a useful analysis of biological

processes and systems. Therefore, the currently utilized
proteomics tool in scientific research usually involves the
examination of protein expressions, modifications, or
interactions on a large scale (Freeman and Hemby, 2004). For
example, functional proteomics with a combination of
interactome analysis using electrophoresis, image statistics,
and protein sequencing technologies was utilized in
identifying particular peptides associated with meat
tenderness (Zhao et al. 2014).

The quantification of proteins provides useful insights into
the role of protein expression changes (up-regulation and
down-regulation) in the regulation of cellular activities.
Recently, several postmortem studies have deepened our
understanding of molecular and cellular mechanisms that
regulate meat tenderness (Bjarnadóttir et al. 2012; Laville et al.
2009; Zhao et al. 2014), meat quality (Lametsch and Bendixen,
2001), and meat color (Canto et al. 2015; Joseph et al. 2012;
Maheswarappa et al. 2016; Mahmood et al. 2018; Nair et al.
2016, 2018a, 2018b; Sayd et al. 2006). A study by Joseph et al.
(2012) showed that changes in sarcoplasmic protein expression
regulate meat color in beef color stable muscles (longissimus
lumborum) compared to color labile muscles (psoas major).
More specifically, they observed a greater abundance of
antioxidant protein and chaperones proteins in color stable
vs. labile muscles, which may explain the differences in color
stability. In addition, Nair et al. (2016) demonstrated that
sarcoplasmic muscle proteins such as creatine kinase M-type
and triosephosphate isomerase are positively correlated with
metmyoglobin reducing activity and color stability in color
stable compared to color labile muscles. Furthermore, these
color stable muscles also show an over-abundance of
myofibrillar proteins, including myosin regulatory light chain
2 and myosin light 1/3 (Canto et al. 2015).

Tandem mass tag labeling: Although gel-based proteomic
approaches have been used to understand the molecular basis
of meat quality attributes over the past few years, gel free-
approaches are starting to gain more popularity. The gel-free
approaches limit some of the drawbacks associated with gel-
based approaches such as under-representation of extreme
acid/basic proteins and the poor sensitivity for lowly expressed
proteins (Nair and Zhai, 2020). Among these, in vitro labeling
techniques such as isotope-coded affinity tags (ICAT) and
isobaric tags are often used. ICAT uses chemically identical
probes with differing mass to tag the treatments, and the peak
intensity of the first mass spectra (MS) is used to obtain relative
intensities whereas the identity is derived from the second

J Meat Sci. June 2020, 15 (1)
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MS. Isobaric tags such as TMT (Tandem Mass Tag) and iTRAQ
(Isobaric Tag for Relative and Absolute Quantitation) enables
accurate and multiplexed quantification by using second M.S.
(MS/MS) for quantitative analysis (Zhang and Elias, 2017). TMT
labeling enables the multiplex of several samples (6-plex to 16-
plex) for relative quantitation and increases analytical
precision and accuracy. Recently, TMT s labeling in
combination with TiO2 phosphopeptide enrichment was
used to investigate the postmortem process and to perform a
quantitative analysis of protein phosphorylation in ovine
muscles with differing color stability (Li et al. 2018). These
researchers identified 27 phosphoproteins were key color-
related proteins, including glycolytic enzymes and myoglobin.
Zhai et al. (2020) used a TMT labeling approach coupled with
high-resolution mass spectrometry to examine proteomic
variation between beef L.L. and PM during the early
postmortem period and highlighted the potential relationships
between metabolism, cell death, and color stability. Moreover,

et al. (2020) identified biomarker candidates for
intramuscular fat deposition in pigs using TMT approach.

INTEGRATED OMICS APPROACHES

Integration approaches use a combination of individual omics
data tools in a sequential or simultaneous way, bridging the
gap from genotypes to phenotypes (Kuo et al. 2013). Several
researchers utilized omics techniques separately to better
understand biochemical changes. However, all biomolecules
such as DNA, protein, and metabolite functions are
interrelated. Integration is important in understanding the
interplay of biological molecules in various biological
processes. Thus, despite the exhaustive potential of analysis
from a single omics tool, integrating multiple omic tools may
further deepen our understanding of postmortem metabolism,
and hence could enable us to develop better strategies that
will help to develop potential meat quality biomarkers.
Therefore, in ideal research, integrated approaches can
provide insights about quality issues. The major challenge in
integrating all omics is with data processing. Although some
software is available, there are limitations in data integration.
In recent years, more researchers are integrating different
omics techniques to elucidate the molecular basis of quality
changes.

The importance of integration of omics data has been realized
for a broad range of research areas including; systems
microbiology (Fondi and Liò, 2015), food and nutritional
science (Kato et al. 2011), and disease biology (Pathak and Davé,
2014; Zhang et al. 2010). However, successful integration has

not yet been realized in meat science research. Additionally,
the challenges of integrating omics data depend on variations
due to large omic data sets per number of observations. For
example, Misra et al. (2019) reported that genomes typically
have millions of variants, while proteomes and metabolomes
include thousands of quantifiable molecules, and thus,
differences in the abundance of various fractions make
integrated omics data analysis even more complex. However,
the promise for the future integration of the omics tool relies
on recent advancements in technological platforms for omic
data acquisition and data search engines, which will thus
further enhance the efficient integration of omic tools.

BIOINFORMATICS TOOLS FOR OMIC DATASETS

Analysis of omics data sets requires some sort of data handling,
which is important in addressing issues relating to data
filtering and cleaning. Omics data is mainly cleaned by doing
transformations, imputations, normalization, and scaling
(Armitage et al. 2015). However, no clear cut workflows are
available for any type of omic data tool. Additionally, different
analysis pipelines could yield different results as data
workflows are under constant developments. Therefore, it is
important always to keep track of the software versions and
the name of species used to annotate gene/protein/metabolite
for a particular study.

There are various bioinformatics tools and database systems
employed in analyzing omics data sets (Berger et al. 2013).
Differential expression analysis of genes, proteins, and
metabolites is one of the widely utilized methods (Misra et al.
2019) to identify genes, proteins, and/or metabolites associated
with specific biochemical pathways. Most of the tools utilized
for proteomics are also extended to genomics data sets.
Genomics data sets are analyzed using DNA microarray
technologies, also called gene expression profiling (Berger et
al. 2013).

Proteomics data sets are usually analyzed by employing a
multi-approach strategy with a number of software. Peptide
spectrums raw data files generated from mass spectrometry
are first matched against a downloaded proteome database
such as UniPort (http://www.uniprot.org/), NCBI reference
sequence (http://www.ncbi.nlm.nih.gov/), etc using
MaxQuant (http://www.maxquant.org/). After, the collected
raw data files from MaxQuant can then be used for statistical
analysis in Perseus (https://omictools.com/perseus-tool) to
identify differential expression by analyzing for fold change,
T-testing, volcano plots, and hierarchical clustering.

J Meat Sci. June 2020, 15 (1)
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Enrichment of biological functional annotations and gene set
enrichment analysis (GSEA) of differentially expressed data
sets is usually performed using David (https://
david.ncifcrf.org/), and Gprofiler (https://biit.cs.ut.ee/
gprofiler/) software, among others freely available online
analytical tools. These software map genes to known
functional information sources and provide clustering into
biological processes, molecular functions, cell
compartmentalization, and pathways associated with the
differentially expressed proteins/genes. For pathway analysis,
Cytoscape  (https://cytoscape.org/) is the most widely used
platform with various application plugin tools such as
Wikipathways (https://www.wikipathways.org/), Reactome
pathway (https://www.reactome.org/). In addition, the Kyoto
encyclopedia of genes and genomes (KEGG, https://
genome.jp/kegg/pathway.html) database also provides a useful
pathway annotation analysis. Lastly, the String database
(https://www.string-db.org/), a Cytoscape plugin, is important
in analyzing potential protein-protein interaction networks
associated with the differentially expressed data sets. The
ingenuity pathway analysis tool (https://
digitalinsights.qiagen.com/) can also be employed for
enrichment, pathway, and network analysis.

For metabolomics data sets, LC-MS and GC-MS metabolomics
data are usually processed in R packages such as XCMS (http:/
/bioconductor.org/), while NMR metabolomics data
processing utilizes Brunker Top Spin software (https://

.bruker.com/topspin.html). Several commonly used
statistical analyses, including fold change analysis, t-test,
volcano plots, principal component analysis (PCA), and
metabolite set enrichment (MSEA), can be analyzed in
MetaboAnalyst (https://cran.r-project.org/web/packages/
MetabolAnalyze/) or metabolomics Galaxy-M (https://
github.com/Viant-Metabolomics/Galaxy-M). However, NMR
metabolomics post-processing statistical analysis also utilizes
a statistical correlation spectroscopy (STOCSY) software
designed specifically to identify biomarkers from NMR
metabolomics data sets.

CONCLUSION

Omic tools help us to understand the importance of a gene/
protein/metabolites in meat quality. The use of multiple omics
techniques will significantly increase our understanding of
quality changes. A single platform such as gas
chromatography-MS, liquid chromatography-MS, or NMR
cannot demonstrate all metabolites. Hence, depending on the
objective of the research, an appropriate selection of

techniques is critical. Furthermore, data analysis and
interpretation remain a significant challenge. The commonly
available software help in analyzing data, but the lack of
consistency in various parameters can influence the outcome.
Johanningsmeier et al. (2016) indicated that omics and related
disciplines are often referred to as hypothesis-generating as
these technologies can demonstrate changes in several
biomolecules at a particular set of conditions. A systematic
analysis is critical to validate the results of omics techniques.
A combination of all omics techniques will improve our
understanding of postmortem changes and will help the
processors to adopt strategies to improve meat quality and
develop biomarkers.
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