Toxin Neutralization Efficacy of Catechin and Silymarin  against Anthrax Toxins

Authors

  • Shumaila Taskeen Division of Veterinary Public Health and Epidemiology, ICAR Indian Veterinary Research Institute, Izatnagar, Bareilly-263122, Uttar Pradesh, India
  • Deepak B Rawool Division of Veterinary Public Health and Epidemiology, ICAR Indian Veterinary Research Institute, Izatnagar, Bareilly-263122, Uttar Pradesh, India
  • Somya Aggarwal School of Biotechnology, Jawaharlal Nehru University (JNU), New Delhi-10067, India
  • Vikas Somani School of Biotechnology, Jawaharlal Nehru University (JNU), New Delhi-10067, India
  • Rakesh Bhatnagar School of Biotechnology, Jawaharlal Nehru University (JNU), New Delhi-10067, India

DOI:

https://doi.org/10.48165/ijvsbt.21.6.11

Keywords:

Anthrax, cAMP, Edema toxin, Lethal toxin, MTT

Abstract

The present study investigated the in-vitro toxin neutralization potential of FDA-approved polyphenols; catechin and silymarin against  anthrax lethal and edema toxin. The titration of protective antigen (PA) against a fixed concentration of LF, and EF induced a linear  dose-dependent cytotoxic effect with maximum attainable cytotoxicity at 10 μg/mL PA, and 1 μg/mL LF/EF in RAW264.7 and CHO.K1  cells. The LT and ET-induced cytotoxicity were assessed using MTT assay, and cAMP ELISA, respectively. All the tested concentrations  (100, 10, 1, 0.1 μM) of catechin and silymarin exhibited a highly significant and dose-dependent reduction in LT-induced cytotoxicity  (p<0.01). Further, a highly significant reduction in cAMP levels in ET-intoxicated cells was observed for the higher concentrations of  both compounds (p<0.01), except at 0.1 μM concentration, while the mean cAMP levels at 100, and 10 μM of silymarin were less as  compared to that at similar concentrations of catechin, the difference was insignificant (p>0.05). The study emphasized the anti-toxin  potential of catechin and silymarin, which could augment the antimicrobials in anthrax infection. Further, future studies focused on  their pharmacodynamics, kinetics, and determination of clinically safe therapeutic doses in vivo are warranted. 

 

Downloads

Download data is not yet available.

Author Biography

  • Shumaila Taskeen, Division of Veterinary Public Health and Epidemiology, ICAR Indian Veterinary Research Institute, Izatnagar, Bareilly-263122, Uttar Pradesh, India

     MJF College of  Veterinary and Animal Science, Chomu, affiliated to RAJUVAS,  Rajasthan, India

References

Abrami, L., Brandi, L., Moayeri, M., Brown, M.J., Krantz, B.A., Leppla, S.H., & van der Goot, F.G. (2013). Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Reports, 5(4), 986-996.

Ahuja, N., Kumar, P., & Bhatnagar, R. (2004). The adenylate cyclase toxins. Critical Reviews in Microbiology, 30(3), 187-196.

Asirvatham, R.D., Hwang, D.H., Prakash, R.L.M., Kang, C., & Kim, E. (2023). Pharmaco-informatic investigation of silymarin as a potential inhibitor against Nemopilema nomurai jellyfish metalloproteinase toxin-like protein. International Journal of Molecular Sciences, 24(10), 8972.

Bae, J., Kim, N., Shin, Y., Kim, S.Y., & Kim, Y.J. (2020). Activity of catechins and their applications. Biomedical Dermatology, 4, 1-10.

Baillie, L., & Read, T.D. (2001). Bacillus anthracis, a bug with attitude! Current Opinion in Microbiology, 4(1), 78-81.

Bower, W.A., Hendricks, K.A., Vieira, A.R., Traxler, R.M., Weiner, Z., Lynfield, R., & Hoffmaster, A. (2022). What is anthrax? Pathogens, 11(6), 690.

Chang, E.H., Huang, J., Lin, Z., & Brown, A.C. (2019). Catechin-mediated restructuring of a bacterial toxin inhibits activity. Biochimica et Biophysica Acta (BBA) - General Subjects, 1863(1), 191-198.

Cherubin, P., Garcia, M.C., Curtis, D., Britt, C.B., Craft Jr, J.W., Burress, H., ... & Teter, K. (2016). Inhibition of cholera toxin and other AB toxins by polyphenolic compounds. PloS One, 11(11), e0166477.

D’Amelio, E., Gentile, B., Lista, F., & D’Amelio, R. (2015). Historical evolution of human anthrax from occupational disease to potentially global threat as bioweapon. Environment International, 85, 133-146.

Dell’Aica, I., Dona, M., Tonello, F., Piris, A., Mock, M., Montecucco, C., & Garbisa, S. (2004). Potent inhibitors of anthrax lethal factor from green tea. EMBO Reports, 5(4), 418-422.

Duesbery, N.S., Webb, C.P., Leppla, S.H., Gordon, V.M., Klimpel, K.R., Copeland, T.D., ... & Vande Woude, G.F. (1998). Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science, 280(5364), 734-737.

Fanoudi, S., Alavi, M.S., Karimi, G., & Hosseinzadeh, H. (2020). Milk thistle (Silybum marianum) as an antidote or a protective agent against natural or chemical toxicities: A review. Drug and Chemical Toxicology, 43(3), 240-254.

Fraschini, F., Demartini, G., & Esposti, D. (2002). Pharmacology of silymarin. Clinical Drug Investigation, 22, 51-65.

Hou, D.X., & Kumamoto, T. (2010). Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Antioxidants and Redox Signaling, 13(5), 691-719.

Hwang, D.H., Lee, H., Choudhary, I., Kang, C., Chae, J., & Kim, E. (2020). Protective effect of epigallocatechin-3-gallate (EGCG) on toxic metalloproteinases-mediated skin damage induced by Scyphozoan jellyfish envenomation. Scientific Reports, 10(1), 18644.

Kumar, P., Ahuja, N., & Bhatnagar, R. (2001). Purification of anthrax edema factor from Escherichia coli and identification of residues required for binding to anthrax protective antigen. Infection and Immunity, 69(10), 6532-6536.

Leppla, S.H. (1982). Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proceedings of the National Academy of Sciences, 79(10), 3162-3166.

Lin, S., Zhang, G., Liao, Y., Pan, J., & Gong, D. (2015). Dietary flavonoids as xanthine oxidase inhibitors: Structure–affinity and structure–activity relationships. Journal of Agricultural and Food Chemistry, 63(35), 7784-7794.

Liu, S., Moayeri, M., & Leppla, S.H. (2014). Anthrax lethal and edema toxins in anthrax pathogenesis. Trends in Microbiology, 22(6), 317-325.

Manish, M., Rahi, A., Kaur, M., Bhatnagar, R., & Singh, S. (2013). A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PloS One, 8(4), e61885.

Miyamoto, T., Toyofuku, S., Tachiki, N., Kimura, E., Zhou, T., Ozawa, T., ... & Honjoh, K.I. (2014). Specific inhibition of cytotoxicity of Shiga-like toxin 1 of enterohemorrhagic Escherichia coli by gallocatechin gallate and epigallocatechin gallate. Food Control, 42, 263-269.

Moayeri, M., Leppla, S.H., Vrentas, C., Pomerantsev, A.P., & Liu, S. (2015). Anthrax pathogenesis. Annual Review of Microbiology, 69(1), 185-208.

Panche, A.N., Diwan, A.D., & Chandra, S.R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47.

Ribeiro, D., Freitas, M., Tomé, S.M., Silva, A.M., Laufer, S., Lima, J.L., & Fernandes, E. (2015). Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation, 38, 858-870.

Shen, Y., Zhukovskaya, N.L., Guo, Q., Florián, J., & Tang, W.J. (2005). Calcium-independent calmodulin binding and two-metal ion catalytic mechanism of anthrax edema factor. The EMBO Journal, 24(5), 929-941.

Singh, B.N., Shankar, S., & Srivastava, R.K. (2011). Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochemical Pharmacology, 82(12), 1807-1821.

Škottová, N., Večeřa, R., Urbánek, K., Váňa, P., Walterová, D., & Cvak, L. (2003). Effects of polyphenolic fraction of silymarin on lipoprotein profile in rats fed cholesterol-rich diets. Pharmacological Research, 47(1), 17-26.

Taskeen, S., Rawool, D.B., Aggarwal, S., Somani, V., & Bhatnagar, R. (2024). In-vitro neutralization efficacy of taxifolin against anthrax toxins. Indian Journal of Veterinary Sciences & Biotechnology, 20(1), 48-51.

Vitale, G., Pellizzari, R., Recchi, C., Napolitani, G., Mock, M., & Montecucco, C. (1998). Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochemical and Biophysical Research Communications, 248(3), 706-711.

Wu, M., & Brown, A.C. (2021). Applications of catechins in the treatment of bacterial infections. Pathogens, 10(5), 546.

Published

2025-11-08

How to Cite

Taskeen, S., B Rawool, D., Aggarwal, S., Somani, V., & Bhatnagar, R. (2025). Toxin Neutralization Efficacy of Catechin and Silymarin  against Anthrax Toxins. Indian Journal of Veterinary Sciences and Biotechnology, 21(6), 60-64. https://doi.org/10.48165/ijvsbt.21.6.11