Genetic Evaluation of Growth Traits in Large White Yorkshire Crossbred Pigs using Random Regression Models
DOI:
https://doi.org/10.48165/ijvsbt.21.3.16Keywords:
AIC, BIC, Breeding value, Eigen functions, Heritability, Random Regression ModelAbstract
The objective of the present study was to determine the heritability estimates and breeding values of body weights in Large White Yorkshire crossbred pigs using random regression models. Data obtained from 51,302 records of 4653 animals, progeny of 155 sires and 291 dams was subjected to random regression analysis using Legendre polynomials of order of fit 3, 4 and 5. Based on AIC values, random regression model with homogenous error variance and order of fit 3 for direct genetic, maternal genetic, maternal permanent environmental, and individual permanent environmental effects was found to be the best model. The first Eigen value accounted for more than 95% of the total genetic variation. The direct genetic heritability estimates tended to increase over time ranging from 0.02±0.00 at 1st week to 0.88±0.08 at 24 weeks of age. The average estimated breeding value for birth weight was 1.15 kg which increased to 39.38 kg at 24 weeks of age.
Downloads
References
Akbas, Y., Takma, C., & Yaylak, E. (2004). Genetic parameters for quail body weights using a random regression model. South African Journal of Animal Science, 34(2), 104-109.
Bermejo, L., Roehe, R., Rave, G., & Kalm, E. (2003). Comparison of linear and nonlinear functions and covariance structures to estimate feed intake pattern in growing pigs. Livestock Production Science, 82, 15-26.
Cai, W., Wu, H., & Dekkers, J.C.M. (2011). Longitudinal analysis of body weight and feed intake in selection lines for residual feed intake in pigs. Asian-Australasian Journal of Animal Sciences, 24(1), 17-27.
Chaudhary, R., Prakash, V., Sailo, L., Singh, A., Karthikeyan, A., Bashir, A., & Kumar, A. (2019). Estimation of genetic parameters and breeding values for growth traits using random regression model in Landrace × desi crossbred pigs. Indian Journal of Animal Sciences, 89, 1104-1108.
Chimonyo, M., Dzama, K., & Bhebhe, E. (2008). Genetic determination of mothering ability and piglet growth in indigenous Mukota sows of Zimbabwe. Livestock Science, 113, 74-80.
Darfour-Oduro, K.A., Naazie, A., Ahunu, B.K., & Aboagye, G.S. (2009). Genetic parameter estimates of growth traits of indigenous pigs in Northern Ghana. Livestock Science, 125, 187-191.
Devi, K.S., Vani, S., & Anjali, V. (2022). Application of random regression models for assessment of direct and maternal genetic parameters of growth characters in large white Yorkshire crossbred pigs. The Pharma Innovation Journal, 11(7), 2021-2025.
Fernandez, A., Rodrigáñez, J., Zuzúarregui, J., Rodríguez, M.C., & Silió, L. (2008). Genetic parameters for litter size and weight at different parities in Iberian pigs. Spanish Journal of Agricultural Research, 6, 98-106.
Gaur, G. K., Sahoo, N.R., Bharti, P.K., Singh, M., & Dutt, T. (2019). Random regression models for genetic analysis of body weight in crossbred pigs. Indian Journal of Animal Sciences, 89(10), 1109-1112.
Jayasree, P., Sivaselvam, S.N., Venkataramanan, R., Sundaram, S.M., Gowrimanokari, K.V., Arthy, V., & Balasubramanyam, D. (2019). Genetic evaluation including maternal effects in Large White Yorkshire × desi crossbred pigs under hot and humid conditions of India. Indian Journal of Animal Sciences, 89, 752-757.
Kingsolver, J. G., Gomulkiewicz, R., & Carter, P. A. (2001). Variation, selection and evolution of function-valued traits. Microevolution Rate, Pattern, Process, 112, 87-104.
Kirkpatrick, M., Lofsvold, D., & Bulmer, M. (1990). Analysis of the inheritance, selection and evolution of growth trajectories. Genetics Research, 124(4), 979-993.
Kohn, F., Sharifi, A.R., Malovrh, S., & Simianer, H. (2007). Estimation of genetic parameters for body weights of the Goettingen minipig with random regression models. Journal of Animal Science, 85(10), 2423-2428.
Lee, D.H., & Do, C.H. (2012). Estimation of genetic parameters from longitudinal records of body weight of Berkshire pigs. Asian Australasian Journal of Animal Science, 25(6), 764-771.
Meyer, K., & Kirkpatrick, M. (2005). Uphill, down dale: quantitative genetics of curvaceous traits. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 1443-1455.
Meyer, K. (2005). Estimates of genetic covariance functions for growth of Angus cattle. Journal of Animal Breeding and Genetics, 122, 73-85.
Meyer, K. (2006). “WOMBAT” - Digging deep for quantitative genetic analyses by restricted maximum likelihood. Proceedings of 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, CDROM.
Mondal, S.K., & Kumar, A. (2013). Genetic evaluation of pre-weaning growth traits in Landrace × Desi piglets. Indian Journal of Animal Research, 49, 273-275.
Mondal, S.K., Kumar, A., Dubey, P.P., Sivamani, B., & Dutt, T. (2014). Estimation of variance and genetic parameters for pre-weaning weights of individual Landrace × Desi synthetic piglets. Journal of Applied Animal Research, 42(3), 338-344.
Oliveria, H.R., Brito, L.F., Lourenco, D. A.L., Silva, F.F., Jamrozik, J., Schaeffer, L.R., & Schenkel, F.S. (2019). Invited Review: Advances and applications of random regression models: From quantitative genetics to genomics. Journal of Dairy Science, 102, 7664-7683.
Ouko, V.O., Ilatsia, E.D., Oduho, G.W., & Kios, D.K. (2016). Genetic parameters for Large White Yorkshire pigs reared under intensive management systems in Kenya. East African Agricultural and Forestry Journal, 82(1), 47-56.
Tomiyama, M., Kanetani, T., Tatsukawa, Y., Mori, H., & Oikawa, T. (2010). Genetic parameters for preweaning and early growth
traits in Berkshire pigs when creep feeding is used. Journal of Animal Science, 88, 879-884.
Zhang, S., Bidanel, J.P., Burlot, T., Legault, C., & Naveau, J. (2000). Genetic parameters and genetic trends in the Chinese × European Tiameslan composite pig line. I. Genetic parameters. Genetics Selection Evolution, 32(1), 41-56.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indian Journal of Veterinary Sciences and Biotechnology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.