

International Journal of Innovative Research in Engineering & Management (IJIREM)

 ISSN: 2350-0557, Volume-9, Issue-5, October 2022

https://doi.org/10.55524/ijirem.2022.9.5.2

Article ID IJIR-1252, Pages 11-17

www.ijirem.org

Innovative Research Publication 11

A Comprehensive Review for Detection and Prevention

Techniques for SQL Injection Attack in Cloud Computing

Munish Saran1, Rajan Kumar Yadav2, Pranjal Maurya3, Sangeeta Devi4, and

Upendra Nath Tripathi5

1,2,3,4 Research Scholar, Department of Computer Science, DDU Gorakhpur University, Gorakhpur, India
5Associate Professor, Department of Computer Science, DDU Gorakhpur University, Gorakhpur, India

Copyright © 2022 Made to Munish Saran et al. This is an open-access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- In today’s world web applications are

integral part of our day today life. Currently there are

infinite numbers of web users around the world. These web

applications allows users to use the services provided by

them upon just a simple clicks from anywhere in the world.

Due to rapid growth as well as competition in the business

the service providers are making use of the web

applications to attract the user. Some of the common

examples of the web applications are banking applications,

social networking applications, ecommerce applications

etc. There exists a variety of attacks that imposes threat on

these web applications. One of such attack is known as

SQL Injection attack. Research has shown that about 64%

of the overall web applications running worldwide are

prone to SQLIA. SQL injection is a SQL code injection

technique, which forces the database to execute malicious

SQL commands that can perform unwanted actions on the

underlying database such as getting access to private

information or even deleting the entire tables or the

database itself. So the prevention against such an attack is

must for the web applications.

Various research work in this area have been carried out so

as to provide better and more accurate defence mechanism

against SQLIA, but still the incident of SQLIA are reported

time and again even with big cloud service providers. This

paper reviews some latest work from some of the best

journals in this area.

KEYWORDS- QL injection attack(SQLIA), Cloud

Security, Machine Learning, SQL injection vulnerability,

Web application, Structured Query Language.

I. INTRODUCTION

The web application provides the services as requested by

the user (client) by taking the request in form of user inputs.

Then this submitted request is posted back to the web server

and accordingly the appropriate service is invoked and the

result is returned to the client. In this overall life cycle of

processing any type of request the destination is database.

During the request submission the attacker can impose the

SQL Injection Attack. Some of the major SQLIA goals for

the attacker are Database finger printing, Extracting data,

Modifying data, Modifying database schema, Remote

control, Bypassing authentication. Fig 1 shows the working

of SQL Injection.

Figure 1: SQL Injection Attack Working

II. ATTACK IMPLEMENTATION

MECHANISM

Malicious SQL commands can be introduced by the

attackers into a web application which relies on taking the

inputs by many different input mechanisms. Some of the

common input mechanisms are discussed in this section.

[19, 20]

 Injection through user input - Web application can

read input of the user that the users provide in several

controls such as text-boxes, text areas, password fields

etc. and this input is submitted via HTTP GET or POST

requests. In this case, the attackers inject malicious

SQL commands in these user input controls.

 Injection through cookies - Cookies are small

amount of information that are stored on clients

machine. The stored information contains client’s state

information generated by Web applications, attacker

may misuse this cookie’s contents which can initiate sql

injection (if this web application uses the cookie’s

contents to build SQL queries.

 Injection through server variables - Web

applications use these server variables in many ways,

such as counting the number of users visited the web

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 12

application, for logging of usage information,

identifying browsing trends etc. Modification to these

variables causes sql injection attack on the web

application.

 Second-order injection - In this type the attackers

enters malicious inputs to the database directly and

when this input is used at a later time, SQL Injection

Attack gets initiated. For example:- If an attacker tries

to impersonate the admin (whose user name =

“admin123”) and changes the password of the admin in

the application with a new password. The sql query for

the updation of password is as follows:

Query_Str="UPDATE users_details SET

user_password=’" + new_password +"’ WHERE

user_Name=’" + user_name + "’ AND password=’"

+old_password + "’"

The injected malicious sql query will be as following (here

it is assumed that the old password is old_Admin and the

new password is new_Admin).

UPDATE users_details SET user_password =”

new_Admin” WHERE userName=”admin123”--“ AND

password= “old_Admin”.

As “--” is treated as comment operator in SQL and

everything following – will be ignored by the database.

Therefore, the attacker is successfully able to update the

admin password in the database.

III. SQLI NJECTION ATTACKS TYPES

Figure 2: SQL Injection Attack Types

 Tautologies-In Tautology type of sql injection attack

all the condition result including the negative ones

becomes true all the time. Thus bypassing the actual

logic and leading to unauthorized access to the

database as well as exploiting the sensitive data. Since

the condition is to be set as true every time in this type

of SQLIA, the fields in the WHERE condition is

targeted by the attacker. [16] For example if an attacker

inputs user id as ADMIN and password as anything’ or

‘Y’=’Y, the query thus formed will be as follows

SELECT * from user WHERE user_id = 'ADMIN' and

password = 'anything' or 'Y'='Y'

The above mentioned query becomes a tautology

condition and evaluates to true giving unauthorized

access the attacker.

 Logically Incorrect Queries- Logically Incorrect

Queries- The attacker in this type of attack

intentionally gives commands that causes logical,

syntax or conversion errors. Information such as

database name, tables names or column names used in

the database are exposed by making use of such type of

syntax errors in the sql commands.

For example the error message given by an application

which is using MICROSOFT SQL SERVER as the

backend database as “Microsoft OLE DB Provider for

SQL Server” is due to failed conversion of a given data

type to another data type caused by an incorrect query

given by the attacker. If the attacker gives the input as

“convert (float , (select employee_name from

sysobjects where xtype=’u’))”.

The resultant query thus formed will be as

SELECT acc_details from bank_details WHERE

password = convert (float , (select

employee_name from sysobjects where xtype=’u’)).

In this case the attacker tries to fetch the table name

from the metadata table and then perform type casting

of table name into float data type which is an invalid

type conversion. Thus application displays the

Microsoft OLE DB Provider for SQL Server” error

message exposing the backend database name

“Microsoft SQL SERVER” as well as the table’s

column name “account_info” due to incorrect type

conversion.

 Union Query- Union query allows, an attacker fetch

information or the sensitive data from a table other than

the original table that is meant to provide that particular

information by injecting an sql query including

UNION SELECT clause. [20]

For example by injecting UNION clause such as:

“UNION SELECT payment_details from Payment

where acctNumber=563214 - -” in the login control

field of the application, which results in the following

sql query:

SELECT User_Info FROM users_details WHERE

login= “UNION SELECT payment_details from

Payment where acctNo=563214 - -“.

There is no user details available in the user_details

table with login equal to “” in the application, so the first

query returns null value in this case while the second

query returns data from the table “Payments”, such as

the payment details of the user for account number =

563214.

 PiggyBacked Queries- This type of SQLIA allows

the attacker to piggyback some additional queries to the

original sql command.

Example : If an attacker wants to delete the table

schema from the database, he can inject the following

value in the login field of the application “’; drop table

ACCOUNT_DETAILS –“. That results into the

following sql query at the backend:

SELECT user_info FROM user_details WHERE

login_id =’SAM’ AND login_password= “’; drop table

ACCOUNT_DETAILS –“.

As the delimiter marks the end of the first query and

treat everything after it as complete second query and

thus goes on to delete the ACCOUNT_DETAILS table

from the database due to additional piggyback query.

 Stored Procedures- Stored procedures are the major

backbone for the backend database. These stored

procedures are required to run sql queries and fetch the

data from the database in the application. [21] The use

of stored procedure minimizes the risk of many attacks

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 13

including SQLIA as well as protects from direct

exposure of sensitive data at the same time. The stored

procedures are provided with the capability of

interacting with the operating system in order to

accomplish several task. But this feature of the stored

procedure can be misused by the attacker and cause

SQLIA.

For example in order to shutdown the operating system,

the attacker may inject the input as “’; SHUTDOWN;”

in user id field of the application and thus forming the

sql command as

 SELECT * from user_info FROM users_details

WHERE login_id =’sam’ AND login_password=” “’;

SHUTDOWN;”.

Although the below mentioned stored procedure is used to

execute the command in the application, but the command

“’; SHUTDOWN; forces the operating system to shut

down as soon as it is executed.

CREATE PROCEDURE

CHECK_USER_AUTHENTICATION

@userName varchar2, @userPassword varchar2

AS

EXEC("SELECT user_info FROM users_details WHERE

login_id=’" +@userName+ "’ and password=’" +@

userPassword);

GO

Fig 2 display all the types of SQL Injection Attacks.

IV. PREVENTION TECHNIQUES

A. Prepared Statement

One of the simple ways to avoid SQLIA is to make use of

prepared statement which uses parameters for the values to

be inserted in the database instead of directly inserting the

user input which may contain malicious scripts capable for

causing SQLIA. [27]

string Command1 = "Select Count(ID) from tblEmployees

where UserName = @UserName and

Password=@Password";

In the above query @UserName and @Password are

parameters to the query.

string Command2 = "select * from tbl_customers where

city_name = @city";

In the above query @city is parameters to the query.

B. Stored Procedures

Stored procedures are stored in the database containing all

the commands that are to be executed when invoked from

the web application. In this way all the user inputs are not

allowed to form a sql query directly and execute in the

database but rather they are given to stored procedures to

which in turn forms legitimate query to get executed. [28]

CREATE PROCEDURE stpUpdateMemberByID

@MemberID int,

@MemberName varchar(50),

@MemberCity varchar(25),

@MemberPhone varchar(15)

 AS

BEGIN

 UPDATE tblMembers

 Set MemberName = @MemberName,

 MemberCity = @MemberCity,

 MemberPhone = @MemberPhone

 Where MemberID = @MemberID

END

GO

C. Validating User Input

User input is captured by the web application in various

web application controls. Web applications must make use

of validations of several types on each of the such controls

used for receiving inputs from the user which basically

checks the syntax of the user input. Examples for such

validation controls are in ASP.NET are

RequiredFieldValidation Control, CompareValidator

Control, RangeValidator Control,

RegularExpressionValidator Control, CustomValidator

Control, ValidationSummary. [21, 25]

D. Encrypting Data

All the data stored in the database must be in encrypted

form, so that in any case if the malicious query gets an

entry in the database must not able to read the data and thus

bypass SQLIA. Below is an example of how to create a

encrypted stored procedure in sql server. [29, 30]

CREATE PROCEDURE

dbo.usp_GetCatsByName @catname varchar(70)

 WITH ENCRYPTION

AS

 SELECT CatId, CatName, Phone

 FROM dbo.Cats WHERE

CatName = @catname;

GO

E. Limiting Privileges

User access is restricted in case of limiting privileges.

According to the specific authorization, users must be

allowed to have access to the database so as to prevent

unauthorized user passing malicious sql query which may

lead to SQLIA. [18]

V. LITERATURE REVIEW

Some of the tools and techniques for detecting and

preventing SQL injection are given below:

Gu et al. [1] proposed a framework for the detection of

SQLIA named as DIAVA which is capable of recognizing

the malicious SQL queries exchanged in the application

and notify the admin about the attack. The damage caused

by the SQLIA is rapidly analyzed by this framework and

thus proves out to be very effective in detecting as well as

preventing of SQLIA on the web applications. DIAVA

performs SQLIA detection via a model which is based on

regular expression and the evaluation of disclosed data is

performed by making use of dictionary based engine.

Tripathy et al. [2] gave a solution to detect the SQLIA in

web application by the use of machine learning. The result

showed that the machine learning algorithm detected the

malicious SQL queries with more than 98% accuracy from

the normal SQL queries and thus proves out to be a better

solution for prevention against SQLIA. The pre-processing

of data such as data cleaning is performed as the data is

collected from various sources which is followed by feature

selection to determine the best set of optimized features that

are actually responsible for the attack. The approach make

used for the following classifier for model selection namely

AdaBoost Classifier, Random Forest, SGD, Tensorflow

Linear classifier, Decision Tree, Deep AN and Tensorflow

boosted tree. The experimental results showed that the

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 14

among these algorithms RandomForest with 10 selected

features showed better results for Precision, Accuracy, F1

score , Recall, specificity and sensitivity.

Aliero et al. [3] proposed to automate the SQLIV (SQL

Injection Vulnerability) in SQLIA by making use of black

box testing. In this context the author proposed an

improved scanner based on object-oriented methodology

that reduces the false negative as well as false positive

results for SQL injection vulnerability in SQLIA. The

scanner works with four major components which are

crawling, attacking, analysis as well as reporting. The

accuracy of the proposed scanner is tested against three

vulnerable applications and the result showed that the

proposed scanner is much efficient than the existing ones.

Another machine learning approach for the detection as

well as prevention of SQLIA is proposed by Hasan et al.

[4]. This model lies between the application and the

application database so as to allow only non-malicious sql

query to get executed in the database. Among the twenty

three different machine learning classifiers which were

used to check the accuracy, it was discovered that the

Ensemble Boosted Tree achieved an accuracy of 93.8%.

Wang et al. [5] proposed long short-term memory (LSTM)

deep learning methodology for detection of SQLIA for

resolving the security concerns in the transport systems.

This methodology depicts the high accuracy and false

positive rate in comparison with other traditional SQLIA

approaches which has high false negative rate and false

positive rate. The risk of over fitting the dataset is

drastically reduced by the proposed LSTM based deep

learning model.

Latchoumi et al. [6] proposed another machine learning

approach as a defence mechanism against SQLIA. For

classification of normal SQL queries against the malicious

SQL queries, all the SQL queries are tested against well

trained SVM algorithm which is capable enough to detect

the malicious queries and thus guard against SQLIA.

Hlaing et al. [7] also suggested a SQLIA detection as well

as prevention mechanism in their research work. The

proposed approach works in two steps. The input sql query

is divided into set of tokens which are double dashes (--),

space (), sharp symbol (#) as well as strings that are

preceded by symbol. After the collection of tokens from the

given input sql query, this token set is checked against the

predefined reserved lexions (which are predefined

legitimate sql commands, operators, symbols etc.) so as to

prevent SQLIA. If match is found between token set and

predefined reserved lexions, then it is concluded that the

SQLIA was attempted and the given sql query is not

allowed to get executed in the database. The outcome of

the research showed better result for prevention against

SQLIA.

An adaptive deep forest (ADF) model for the purpose of

detecting SQLIA is suggested by LI et al. [8] instead of

traditional machine learning models which are prone to

over-fitting and thus produced better results in terms of

precision, accuracy, f1-score and recall. The attack

detection accuracy is improved to a great extent in ADT as

compared to deep forest due to use of multi-grained

scanning for feature transformation and layer by layer

learning. Apart from improved detection accuracy high

robustness, flexibility as well as reduced computational

cost is also achieved by ADT (adaptive deep forest).

Knuth-Morris-Pratt algorithm for detection as well as

prevention of SQLIA and XSS is given by Abikoye et al.

[9]. The KMP algorithm is used to create a filter() function

which is responsible for matching the given user input

against the stored malicious strings capable for causing

SQLIA. The proposed methodology not only detects the all

types of SQLIA including union-based, boolean-based,

batch query, error-based, like-based but also sends alert

messages to the admins as well as creates the corresponding

log records.

Durai et al. [10] proposed a detection as well as prevention

methodology against SQLIA for web application that are

hosted in cloud environment and is making use of http or

https protocols. They named this methodology as SQLIO

(SQL Injection based on Ontology). The ontology model

has three frameworks in this proposed methodology namely

attack, vulnerability and threat model. The threat model

figures out the category of the attacks while the

vulnerability model list out the vulnerability of the web

application and the attack model protects against these

attacks. This model helps in categorizing the attacks

according to the severeness of the attack caused on the web

application and thus proves out to be crucial in detecting as

well as protection against SQLIA on cloud based web

application.
Another mitigation technique against cloud based

applications is given by Patil et al [11]. The query given by

the user is divided into tokens and all the tokens thus

formed are compared with tokens that are capable of

causing SQLIA at the web server end. And in case of any

suspicious tokens found in the sql query, the query is

returned by the web servers preventing the SQLIA. This

implementation has given better results for cloud

applications which suffers from numerous security threats.
SQLIA prevention framework for cloud application at the

application level is also given by Yassin et al. [12]. The

framework is hosted on Amazon Web Services and can be

effectively adopted by the SaaS providers as their security

framework. The http request for a hosted cloud service is

thoroughly examined for an suspicious tokens capable for

SQLIA as well as relationship of time between the query

and request is also monitored by this SQLIDaaS

framework.

A predictive analysis utilizing machine learning algorithm

is proposed by Uwagbole et al. [13] for detection and

protection mitigation scheme against SQLIA. The data set

is prepared which contains symbols and tokens responsible

for SQLIA and pre-processed to follow machine learning

pipeline. The application is trained and tested with the data

set against a web application hosted on cloud environment.

The machine learning classifier acts as the prevention for

malicious sql request thus acting as a defense against

SQLIA.

Leelavathy et al. [14] gave a defence methodology against

DDoS and various types of SQLIA in their research paper.

Request packets are inspected and a software puzzle

approach is applied to detect the suspicious request that

may become cause for SQLIA. The summary for literature

review is summarized in Table 1 and 2 shows the

comparison of SQL Attacks in various techniques and

Table 3 distinguishes the various works on the basis of

detection or prevention techniques.

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 15

Table 1: Summary of the approaches proposed to defense

against SQLIA

REFRR

ENCES

PROPOSED

FRAMEWOR

K/TOOL

TECHNIQUE USED ADVANTAGE

Gu et al. [1] DIAVA

Regular

Expression based

model

Detection as well

as prevention

against SQLIA.

Tripath

y et al.

[2]

ML Model
Random Forest

ML Classifier

High accuracy in

detection for

SQLIA.

Aliero

et al.

[3]

Scanner Black box testing

Accuracy testing

done against three

vulnerable web

applications.

Hasan

et al.

[4]

ML Model
Ensemble

Boosted Tree.

93.8% accurate

results obtained.

Wang

et al.

[5]

ML Model

Long Short-Term

Memory (LSTM)

based on deep

learning

Overfitting of the

dataset is reduced

to a great extent

thus giving better

results.

Latchou

mi et al.

[6]

ML Model SVM Algorithm

More accurate

detection of

malicious sql

query is attained

Hlaing

et al.

[7]

Scanner

Predefined

lexions based

checking of sql

queries

Capable of

sanitizing the sql

query by matching

against predefined

list of tokens

LI et al.

[8]

Adaptive

Deep Forest
Deep Learning

Overfitting of the

dataset is reduced

to a great extent

thus giving better

results.

Abikoy

e et al.

[9]

-
Knuth-Morris-

Pratt algorithm

Detection of all

types of SQLIA is

made possible

Durai et

al. [10]

SQL

Injection

based on

Ontology

(SQLIO)

Capable for

SQLIA detection

as well as

prevention for

cloud based

applications.

Patil et

al [11]
IDS

Comparison

against malicious

tokens

Better defence

against SQLIA is

achieved.

Yassin

et al.

[12]

SQLIDaaS
Analysis of web

service request

Defence against

SQLIA for SaaS

based cloud web

applications.

Uwagb

ole et

al. [13]

ML Model
ML based

classification

Detection as well

as Prevention for

SQLIA increased

with ML Model.

Leelava

thy et

al. [14]

Deep Packet

Inspection

(DPI)

Software puzzle

based approach

Defence against

DDoS and SQLIA

made possible

Table 2: Comparison of various techniques with respesct

to various types of sql injection attacks

TUT: Tautology, ILL:- Illegal/Incorrect, PIG:- Piggy-

back, UNI:- Union, SP:- Stored-Procedure, INF:-

Inference, ALT:-Alternate Encoding

Table 3: Comparison of various techniques with respesct

to detection and prevention

Methodology Detection (D) Prevention (P)

DIAVA based on regular

expression [1]
D/P

RandomForest classifier

[2]
D/P

Scanner based on object-

oriented [3]
D

Ensemble Boosted Tress

classifier [4]
D/P

Deep learning using

LSTM [5]
P

SVM algorithm [6] D/P

Predefined reserved

lexions [7]
D

Adaptive deep forest [8] D/P

Knuth-Morris-Pratt

algorithm [9]
D/P

SQL Injection based on

Ontology [10]
D/P

Multilevel System[11] D/P

SQLIDaaS framework

[12]
D/P

Machine Learning

Predictive Analysis [13]
D/P

Deep Packet Inspection

[14]
D/P

VI. CONCLUSION AND FUTURE WORK

Security of database is one of the prime issue which is to be

taken care of. There are several types of attacks in the web

applications where SQL Injection also has an important

place. The attackers can inject the malicious sql code at

various points of the application and can gain access to the

database. There are several types of tools and frameworks

available working on different technique for

detection/prevention for SQL Injection attack, some of

which is discussed in this paper. In our future work we

propose a development of a security mechanism for

ensuring the security for SQL injection attack for the web

REF TUT ILL PIG UNI SP INF ALT

[1] YES YES YES YES YES YES YES

[2] YES YES YES YES YES YES YES

[3] YES YES YES YES YES YES NO

[4] YES NO YES NO YES YES YES

[5] YES YES YES YES YES NO NO

[6] YES NO NO YES YES YES YES

[7] YES YES NO NO YES YES YES

[8] YES YES YES NO YES NO YES

[9] YES YES YES YES YES YES NO

[10] YES YES YES YES YES YES YES

[11] YES YES YES YES YES YES YES

[12] YES YES YES NO YES YES YES

[13] YES YES NO YES NO YES YES

[14] YES YES YES YES YES NO NO

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 16

applications and testing its effectiveness, efficiency, and

performance.

REFERENCES

[1] Gu H., Zhang J., Liu T., Hu M., Zhou J., Wei T., Chen M,

“DIAVA: A Traffic-Based Framework for Detection of

SQL Injection Attacks and Vulnerability Analysis of Leaked

Data”. IEEE TRANSACTIONS ON RELIABILITY, pp.

188-202, 2019.

[2] Tripathy D., Gohil R., and Halabi T., “Detecting SQL

Injection Attacks in Cloud SaaS using Machine

Learning”. IEEE International Conference on Big Data

Security on Cloud (BigDataSecurity), High Performance

and Smart Computing (HPSC) and Intelligent Data and

Security (IDS), 2020.

[3] Aliero M.S., Ghani I., Qureshi K.N., Rohani M.F, “An

algorithm for detecting SQL injection vulnerability using

black-box testing”. Journal of Ambient Intelligence and

Humanized Computing, pp. 249-266, 2019.

[4] Hasan M., Balbahaith Z., Tarique M., “Detection of SQL

Injection Attacks: A Machine Learning Approach”.

International Conference on Electrical and Computing

Technologies and Applications (ICECTA), 2019.

[5] Li Q., Wang F., Wang J., Li W., “LSTM-Based SQL

Injection Detection Method for Intelligent Transportation

System”. IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY, pp. 4182-4191, 2019.

[6] Latchoumi T.P., Reddy M.S., Balamurugan K., “Applied

Machine Learning Predictive Analytics to SQL Injection

Attack Detection and Prevention”. European Journal of

Molecular & Clinical Medicine, 2020.

[7] Hlaing Z.C.S.S., Khaing M., “A Detection and Prevention

Technique on SQL Injection Attacks”. IEEE Conference on

Computer Applications(ICCA), 2020.

[8] LI Q., LI W., WANG J., CHENG M., “A SQL Injection

Detection Method Based on Adaptive Deep Forest”. IEEE

Access, pp. 145385-145394, 2019.

[9] Abikoye O.C., Abubakar A., Dokoro A.D., Akande O.N.,

Kayode A.A, “A novel technique to prevent SQL injection

and cross-site scripting attacks using Knuth-Morris-Pratt

string match algorithm”. EURASIP Journal on Information

Security, 2020.

[10] Durai K.N., Subha R., Haldorai A, “A Novel Method

to Detect and Prevent SQLIA Using Ontology to Cloud

Web Security”. Wireless Personal Communications, 2020.

[11] Patil A., Athawale S.V., Tathawade. P., Laturkar A., Takale

R., “A Multilevel System to Mitigate DDoS, Brute force and

SQL Injection Attack for Cloud Security”. IEEE,

International Conference on Information, Communication,

Instrumentation and Control, 2017.

[12] Yassin M., Slimane H., Talhi T., Boucheneb H.,

“SQLIIDaaS: A SQL injection intrusion detection

framework as a service for SaaS providers”. IEEE 4th

International Conference on Cyber Security and Cloud

Computing, 2017.

[13] Uwagbole S.O., Buchanan W.J., Fan L., “Applied Machine

Learning Predictive Analytics to SQL Injection Attack

Detection and Prevention”. 3rd International Workshop on

Security for Emerging Distributed Network Technologies,

2017.

[14] Leelavathy S., Jaichandran R. Shobana R., Bhaskaran S.,

Aravindh, Prathyunnan., “A Secure Methodology to Detect

and Prevent Ddos and Sql Injection Attacks”. Turkish

Journal of Computer and Mathematics Education, 2021.

[15] Jemal I., Cheikhrouhou O., Hamam H. Mahfoudhi A., “SQL

Injection Attack Detection and Prevention Techniques

Using Machine Learning”. International Journal of Applied

Engineering Research, pp. 569-580, 2020.

[16] Hu J., Zhao W., Cui Y., “A Survey on SQL Injection

Attacks, Detection and Prevention”. ICMLC: International

Conference on Machine Learning and Computing, pp. 483-

488, 2020.

[17] Uwagbole S.O., Buchanan W.J., Fan L., “Applied Machine

Learning predictive analytics to SQL Injection Attack

detection and prevention”. IFIP/IEEE International

Symposium on Integrated Network Management, 2017.

[18] Alwan Z.S., Younis M.F., “Detection and Prevention of

SQL Injection Attack: A Survey”. International Journal of

Computer Science and Mobile Computing, pp. 5-17, 2017.

[19] Marashdeh Z., Suwais K., Alia M., “A Survey on SQL

Injection Attack: Detection and Challenges”. International

Conference on Information Technology (ICIT), 2020.

[20] Sharma K., Bhatt S., “SQL injection attacks - a systematic

review”. International Journal of Information and Computer

Security, pp. 493-509, 2019.

[21] Fu X., Wang Z. , Chen Y., Chen Y., Wu H., “SQL Injection

in Cloud: An Actual Case Study”.

International Conference on P2P, Parallel, Grid, Cloud and

Internet Computing, pp. 137-147, 2019.

[22] Xiao F., Zhijian W., Meiling W., Ning C., Yue Z., Lei Z.,

Pei W., Xiaoning C., “An old risk in the new era: SQL

injection in cloud environment”. International Journal of

Grid and Utility Computing, pp. 43-54, 2021.

[23] Kourai, K., T. Azumi, and S. Chiba. A self-protection

mechanism Pietraszek T., Berghe C.V. Defending against

Injection Attacks through Context-Sensitive String

evaluation. Recent Advances in Intrusion Detection, pp:

124-145.

[24] Su Z., Wassermann G. The essence of command injection

attacks in _b applications. ACM Symposium on Principles

of Programming Languages.

[25] Hegde A.K., Jayanthi P.N., “A Survey on SQL Injection

Attacks and Prevention Methods”. International Research

Journal of Engineering and Technology, pp. 535-537, 2020.

[26] McClure RA., Kruger I.H., “SQL DOM: compile time

checking of dynamic SQL statements”. International

Conference on, pp. 88- 96.

[27] Wei K., Muthuprasanna M., Kothari S. Preventing SQL

Injection Attacks in Stored Procedures. Proceedings of the

2006 Australian Software Engineering Conference

(ASWEC'06 IEEE).

[28] Chowdhury S., Nandi A., Ahmad M., Jain A., Pawar M., “A

Comprehensive Survey for Detection and Prevention of

SQL Injection”. 7th International Conference on Advanced

Computing and Communication Systems (ICACCS), 2021.

[29] Bhateja N., Sikka S., Malhotra A., “A Review of SQL

Injection Attack and Various Detection Approaches”. Smart

and Sustainable Intelligent Systems, 2021.

[30] Johny J.H.B., Nordin W.A.F.B., Lahapi N.M.B., Leau Y.,

“SQL Injection Prevention in Web Application: A

Review”. International Conference on Advances in Cyber

Security, 2022.

ABOUT THE AUTHORS

 Munish Saran received the Bachelor

of Technology (B.Tech.) in Computer

Science Engineering (CSE) from Babu

Banarasi Das National Institute of

Technology & Management and Master

of Technology (M. Tech. Gold Medal) in

Computer Science Engineering (CSE)

from Madan Mohan Malaviya

University of Technology. He is

currently Ph.D. research scholar in the

Department of Computer Science, DDU

Gorakhpur University. His research

interest includes Cloud Computing, IoT,

Machine Learning and Deep Learning.

He was previously working in Infosys as

senior system engineer for 4 years.

https://ieeexplore.ieee.org/xpl/conhome/9007008/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9007008/proceeding
https://ieeexplore.ieee.org/author/37085771470
https://ieeexplore.ieee.org/author/37435689600
https://ieeexplore.ieee.org/author/37895699900
https://ieeexplore.ieee.org/author/37088920510
https://ieeexplore.ieee.org/author/38190880900
https://ieeexplore.ieee.org/author/37086835207
https://ieeexplore.ieee.org/xpl/conhome/9491111/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9491111/proceeding
https://www.inderscienceonline.com/journal/ijguc
https://www.inderscienceonline.com/journal/ijguc

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 17

 Rajan Kumar Yadav received the

Bachelor of Science (B.Sc.) in computer

Science from Deen Dayal Upadhyaya

Gorakhpur University, Gorakhpur (Uttar

Pradesh, India) and Master of Computer

Application (MCA) from Madan Mohan

Malaviya University of Technology. He

is currently Ph.D. Research Scholar in

the Department of Computer Science,

DDU Gorakhpur University. His

Research interest includes Cloud

Computing, Machine Learning and IoT.

 Pranjal Maurya received the

Bachelor of Technology (B.Tech.) in

Computer Science Engineering of

Technology & Management and Master

of Technology (M.Tech.) in Computer

Science Engineering (CSE) from Madan

Mohan Malaviya University of

Technology. She is currently Ph.D.

research Scholar in the Department of

Computer Science, DDU Gorakhpur

University. Her research interest

includes WSN, Cloud Computing, IoT,

Machine Learning and Deep Learning.

She was previously working in Institute

of Technology & Management as

Assistant Professor for 1 years.

 Sangeeta Devi received the Master of

Computer Application (MCA) from

IGNOU New Delhi and Master of

Technology (M.Tech.) from AKTU

Lucknow. She is currently Ph.D.

research Scholar in the Department of

Computer Science, DDU Gorakhpur

University. Her research interest

includes Data Science, WSN, IoT,

Machine Learning and Deep Learning.

 Dr. Upendra Nath Tripathi is

currently Associate Professor in the

Department of Computer Science, Deen

Dayal Upadhyaya Gorakhpur

University, Gorakhpur. He has 21 years

of teaching and research experience. His

areas of interests are Database, IoT,

Machine Learning, Cloud Computing

and Data Science.

