Generalization of Hermite-Hadamard Integral Inequality via Caputo Fabrizio Fractional Integral Operator
DOI:
https://doi.org/10.48165/gjs.2025.2202Keywords:
Preinvexity, H-H inequality, Caputo-Fabrizio OperatorAbstract
Certainly, fractional calculus has grabbed the keen interest of numerous investigators in the last couple of decades. Numerous real-world problems and demonstrations have involved the development of the Caputo-Fabrizio fractional operator. Our article’s primary goal is to enhance Hermite-Hadamard (H-H) integral inequality and its generalizations by applying the Caputo-Fabrizio fractional integral operator (CFFIO) and the preinvexity concept. We additionally offer some applications of our key findings to specific methods.
References
Ahmad, H., Khokhar, R., Tariq, M., Suleman, M., Ntouyas, S. K., & Tariboon, J. (2023). Some new notions of fractional Hermite-Hadamard type inequalities involving applications to the physical sciences. Journal of Mathematics and Computer Science, 33(1), 27–41.
Tariq, M., Ntouyas, S. K., & Shaikh, A. A. (2023). A comprehensive review of the Hermite-Hadamard inequality pertaining to Quantum Calculus. Foundations, 3, 340–379.
Tariq, M., Shaikh, A. A., Ntouyas, S. K., & Tariboon, J. (2023). A comprehensive review of the Hermite-Hadamard inequality pertaining to fractional differential operators. Surveys in Mathematics and its Applications, 18, 223–257.
Tariq, M., Ntouyas, S. K., & Shaikh, A. A. (2023). A comprehensive review of the Hermite–Hadamard inequality pertaining to fractional integral operators. Mathematics, 11, 1953.
Tariq, M., Sahoo, S. K., & Ntouyas, S. K. (2023). Some refinements of Hermite–Hadamard type Integral inequalities involving refined convex function of the Raina type. Axioms, 12, 124.
Tariq, M., Shaikh, A. S., & Ntouyas, S. K. (2023). Some new fractional Hadamard and Pachpatte type inequalities with applications via generalized preinvexity. Symmetry, 15, 1033.
Ahmad, H., Tariq, M., Sahoo, S. K., Baili, J., & Cesarano, C. (2021). New estimations of Hermite-Hadamard type integral inequalities for special functions. Fractal and Fractional, 5, 144.
Cortez, M. J. V., Liko, R., Kashuri, A., & Hernández, J. E. H. (2019). New quantum estimates of trapezium-type inequalities for generalized ϕ–convex functions. Mathematics, 7, 1047.
Cortez, M. J. V., Kashuri, A., & Hernández, J. E. H. (2020). Trapezium-type inequalities for Raina’s fractional integrals operator using generalized convex functions. Mathematics, 12, 1034.
Du, T. S., Liao, J. G., Chen, L. G., & Awan, M. U. (2016). Properties and Riemann–Liouville fractional Hermite–Hadamard inequalities for the generalized (α, m)-preinvex functions. Journal of Inequalities and Applications, 2016, 306.
Du, T. T., Liao, J. G., & Li, Y. J. (2016). Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)–preinvex functions. Journal of Nonlinear Science and Applications, 9, 3112–3126.
Barani, A., Ghazanfari, G., & Dragomir, S. S. (2012). Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. Journal of Inequalities and Applications, 2012, 247.
Du, T. T., Liao, J. G., & Li, Y. J. (2016). Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)–preinvex functions. Journal of Nonlinear Science and Applications, 9, 3112–3126.
Weir, T., & Mond, B. (1988). Preinvex functions in multiple-objective optimization. Journal of Mathematical Analysis and Applications, 136, 29–38.
Deng, Y., Kalsoom, H., & Wu, S. (2019). Some new Quantum Hermite–Hadamard-type estimates within a class of generalized (s, m)—preinvex functions. Symmetry, 11, 1283.
Farajzadeh, A., Noor, M. A., & Noor, K. I. (2009). Vector nonsmooth variational-like inequalities and optimization problems. Nonlinear Analysis, 71, 3471–3476.
Noor, M. A. (1994). Variational–like inequalities. Optimization, 30, 323–330.
Mitrinovic, D. S., Pecaric, J. E., & Fink, A. M. (1993). Classical and New Inequalities in Analysis. Kluwer Academic.
Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1, 73–85.