Hermite-Hadamard Type Inequality Via Caputo-Fabrizio Fractional Integral Operators: A Review Note

Authors

  • Ajab Ali Department of Basic Sciences and Related Studies, Mehran UET, Jamshoro, Pakistan
  • Muhammad Tariq Mathematics Research Center, Near East University, Near East Boulevard, 99138, Nicosia /Mersin, Turkey
  • Asif Ali Shaikh Department of Basic Sciences and Related Studies, Mehran UET, Jamshoro, Pakistan
  • Dawood Khan Department of Mathematics, Universiti Sains Malaysia

DOI:

https://doi.org/10.48165/gjs.2025.2205

Keywords:

Convexity, H-H inequality, Caputo-Fabrizio fractional operator

Abstract

 

The idea of convexity is mainly employed in the realm of fractional calculus to address a number of issues in pure and practical research. The purpose of this review note is to demonstrate Hermite-Hadamard (H-H) inequalities via Caputo Fabrizio fractional integral operators associated with various topic of convexity. 

 

Author Biography

  • Muhammad Tariq, Mathematics Research Center, Near East University, Near East Boulevard, 99138, Nicosia /Mersin, Turkey

    Department of Mathematics, Balochistan Residential College, Loralai, Balochistan, Pakistan

References

Tariq, M. (2021). Hermite-Hadamard type inequalities via p–harmonic exponential type convexity and applications. Universal Journal of Mathematics and Applications, 4(2), 59–69.

Sahoo, S. K., Tariq, M., Ahmad, H., Aly, A. A., Felemban, B. F., & Thounthong, P. (2021). Some Hermite-Hadamard-type fractional integral inequalities involving twice-differentiable mappings. Symmetry, 13, 2209.

Tariq, M., Ahmad, H., Sahoo, S. K., Kashuri, A., Nofal, T. A., & Hsu, C. H. (2022). Inequalities of Simpson-Mercer-type including Atangana Baleanu fractional operators and their applications. AIMS Mathematics, 7(8), 15159–15181.

Tariq, M., & Ntouyas, S. K. (2023). A comprehensive review of the Hermite–Hadamard inequality pertaining to fractional integral operators. Mathematics, 11, 1953.

Butt, S. I., Budak, H., Tariq, M., & Nadeem, M. (2021). Integral inequalities for n-polynomial s-type preinvex functions with applications. Mathematical Methods in the Applied Sciences, 44(14), 11006–11021.

Ozdemir, M. E., Dragomir, S. S., & Yildiz, C. (2013). The Hadamard’s inequality for convex functions via fractional integral. Acta Mathematica Scientia, 33(5), 1293–1299.

Hermite, C. (1883). Sur deux limites d’une intégrale définie. Mathesis, 3, 82.

Hamard, J. (1893). Etude sur les propriétés des fonctions entieres et en particulier d’une fonction considérée par Riemann. Journal de Mathématiques Pures et Appliquées, 9, 171–216.

Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1(2), 73–85.

Gürbüz, M., Akdemir, A. O., Rashid, S., & Set, E. (2020). Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities. Journal of Inequalities and Applications, 2020, 172.

Sahoo, S. K., Mohammed, P. O., Kodamasingh, B., Tariq, M., & Hamed, Y. S. (2022). New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator. Fractal and Fractional, 6, 171.

Abbasi, A. M. K., & Anwar, A. (2022). Hermite-Hadamard inequality involving Caputo-Fabrizio fractional integrals and related inequalities via s-convex functions in the second sense. AIMS Mathematics, 7(10), 18565–18575.

Rashid, S., ˙I¸scan, ˙I., Baleanu, D., & Chu, Y. M. (2020). Generation of new fractional inequalities via n–polynomials s–type convexity with applications. Advances in Difference Equations, 2020, 264.

Tariq, M., Alsalami, O. M., Sahoo, S. K., Nonlaopon, K., & Ntouyas, S. K. (2022). New fractional integral inequalities pertaining to Caputo Fabrizio and generalized Riemann-Liouville fractional integral operators. Axioms, 11, 618.

Tariq, M., Khan, K. A., Shah, N. A., & Chung, J. D. (2023). On Caputo fractional derivatives and Caputo-Fabrizio integral operators via (s, m)-convex functions. Fractal and Fractional, 7, 187.

Tariq, M., Ntouyas, S. K., & Tariboon, J. (2026). Some new variants of fractional Hermite-Hadamard and Pachpatte-type integral inequalities involving Raina’s and Mittag-Leffer functions with applications. Journal of Mathematics and Computer Science, 40(3), 415–443.

Tariq, M., Ahmad, H., Shaikh, A. G., Sahoo, S. K., Khedher, K. M., & Gia, T. N. (2021). New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator. AIMS Mathematics, 7(5), 3440–3455.

Kalsoom, H., Idrees, M., Baleanu, D., & Chu, Y. M. (2020). New estimates of quantum Hermite-Hadamard-type inequalities for generalized -convex functions. Journal of Function Spaces, 2020, 3720798.

Tariq, M., Shaikh, A. A., & Ntouyas, S. K. (2023). Some new fractional Hadamard and Pachpatte-type inequalities with applications via generalized preinvexity. Symmetry, 15, 1033.

Published

2025-10-08

How to Cite

Hermite-Hadamard Type Inequality Via Caputo-Fabrizio Fractional Integral Operators: A Review Note. (2025). Global Journal of Sciences, 2(2), 51-60. https://doi.org/10.48165/gjs.2025.2205