BIOACTIVITY EVALUATION OF THE SCHOLAR TREE (Echites scholaris L.) BARK EXTRACTS BASED ON CHEMICAL PROFILING, in vitro AND in silico ASSAYS AGAINST MALARIAL PARASITE
DOI:
https://doi.org/10.48165/abr.2025.27.01.42Keywords:
Antimalarial, drug resistance, medicinal plant, phytocompound, Plasmodium falciparumAbstract
In Mizo traditional medicine, the scholar tree (Echites scholaris) is used as a therapy for various illnesses, including blood disorders and malarial infection. To evaluate its antimalarial properties, bark extracts were prepared using solvents of differing polarities (chloroform and petroleum ether). The plant extracts were tested against two strains of the human malarial parasite: a drug-sensitive Plasmodium falciparum (Pf3D7) and a multidrug-resistant strain (PfK1). The extracts showed effectiveness against both strains.The chloroform-based extract exhibited high activity, with half-maximal inhibitory concentration (IC₅₀) values of 14.0 µg mL⁻¹ against Pf3D7 and 10.0 µg mL⁻¹ against PfK1. The petroleum ether-based extract was slightly less potent, showing IC₅₀ values of 22.0 µg mL⁻¹ (Pf3D7) and 26.7 µg mL⁻¹ (PfK1). In terms of drug resistance potential, the petroleum-based extract exhibited an extremely low level of resistance (Ri = 1.2), while the chloroform-based extract showed no resistance (Ri < 1).Cytotoxicity testing against VERO C1008 cells revealed that the plant extracts were highly safe, with half-maximal cytotoxic concentrations (CC₅₀) far exceeding the toxicity threshold. Gas chromatography–mass spectrometric analysis identified cis-3-hexenyl acetate and 3-decyn-2-ol as major phytocompounds in the chloroform-based extract, while linoelaidic acid, phthalic acid, and 2-ethylbutyl nonyl ester were predominant in the petroleum ether-based extract. Computational binding studies against vital proteins such as Plasmodium falciparum erythrocyte membrane protein 1 (VAR2CSA) and S-adenosyl-L-homocysteine hydrolase (SAHH) indicated high ligand-binding capacity. This study validates the antimalarial application of the plant and provides a rationale for further molecular and pharmacological investigations.
Downloads
References
Agarwal, P., Anvikar, A. R., Pillai, C. R., & Srivastava, K. (2017). In vitro susceptibility of Indian Plasmodium falciparum isolates to different antimalarial drugs & antibiotics. Indian Journal of Medical Research, 146(5), 622–628.
Banik, B., Das, S., & Das, M. K. (2020). Medicinal plants with potent anti-inflammatory and anti-arthritic properties found in eastern parts of the Himalaya: An ethnomedicinal review. Pharmacognosy Reviews, 14(28), 121–137.
Bruce-Chwatt, L. J. (1990). Cinchona and quinine: A remarkable anniversary. Interdisciplinary Science Reviews, 15(1), 87–93.
Ceravolo, I. P., Aguiar, A. C., Adebayo, J. O., & Krettli, A. U. (2021). Studies on activities and chemical characterization of medicinal plants in search for new antimalarials: A ten-year review on ethnopharmacology. Frontiers in Pharmacology, 12, 734263. https://doi.org/10.3389/fphar.2021.734263
de Castro Barbosa, E., Alves, T. M. A., Kohlhoff, M., Jangola, S. T. G., Pires, D. E. V., Figueiredo, A. C. C., et al. (2022). Searching for plant-derived antivirals against dengue virus and Zika virus. Virology Journal, 19, 31. https://doi.org/10.1186/s12985-022-01751-z
Dutta, A., Panchali, T., Khatun, A., Jarapala, S. R., Das, K., Ghosh, K., Chakrabarti, S., & Pradhan, S. (2023). Anti-cancer potentiality of linoelaidic acid isolated from marine Tapra fish oil (Ophisthopterus tardoore) via ROS generation and caspase activation on MCF-7 cell line. Scientific Reports, 13(1), 14125. https://doi.org/10.1038/s41598-023-34885-3
Ecker, A., Lehane, A. M., Clain, J., & Fidock, D. A. (2012). PfCRT and its role in antimalarial drug resistance. Trends in Parasitology, 28(11), 504–514.
El Mohammady, E. M., El-Rahim, A., Mohamed, W., Gohar, M. R., Abd ElAleem, M., & Elsayed, T. R. (2024). Applying wheat-associated bacteria producing volatile organic compounds antagonistic to plant pathogenic fungi. Egyptian Journal of Chemistry, 67(13), 1103–1115.
Feachem, R. G., Chen, I., Akbari, O., Bertozzi-Villa, A., Bhatt, S., Binka, F., et al. (2019). Malaria eradication within a generation: Ambitious, achievable, and necessary. The Lancet, 394(10203), 1056–1112.
Feng, L., He, X.-L., Richard, C., & Cao, J. (2019). A brief history of artemisinin: Modes of action and mechanisms of resistance. Chinese Journal of Natural Medicines, 17(5), 331–336.
Frausin, G., Lima, R. B. S., Hidalgo, A. D. F., Ming, L. C., & Pohlit, A. M. (2015). Plants of the Araceae family for malaria and related diseases: A review. Revista Brasileira de Plantas Medicinais, 17, 657–666.
Freire, P. F., Peropadre, A., Martín, J. P., Herrero, O., & Hazen, M. J. (2009). An integrated cellular model to evaluate cytotoxic effects in mammalian cell lines. Toxicology in Vitro, 23(8), 1553–1558.
Gadekar, R., Singour, P. K., Chaurasiya, P. K., Pawar, R. S., & Patil, U. K. (2010). Potential of some medicinal plants as antiulcer agents. Pharmacognosy Reviews, 4(8), 136–146.
Gil, J. P., & Fançony, C. (2021). Plasmodium falciparum multidrug resistance proteins (pfMRPs). Frontiers in Pharmacology, 12, 759422. https://doi.org/10.3389/fphar.2021.759422
Guchait, A., Kumar, A., Singh, R., Joshi, G., & Dwivedi, A. R. (2023). Reported phytochemicals as druggable leads with antimalarial potential: A review. Medicinal Chemistry Research, 32(8), 1633–1657.
Habibi, P., Shi, Y., Grossi-de-Sa, M. F., & Khan, I. (2022). Plants as sources of natural and recombinant antimalaria agents. Molecular Biotechnology, 64(11), 1177–1197.
Huang, L., Zhu, X., Zhou, S., Cheng, Z., Shi, K., Zhang, C., & Shao, H. (2021). Phthalic acid esters: Natural sources and biological activities. Toxins, 13(7), 495. https://doi.org/10.3390/toxins13070495
Jelali, H., Mansour, L., Deniau, E., Sauthier, M., & Hamdi, N. (2022). Synthesis of phthalimides and their biological activities. Polycyclic Aromatic Compounds, 42(4), 1806–1813.
Johnson, J. D., Dennull, R. A., Gerena, L., Lopez-Sanchez, M., Roncal, N. E., & Waters, N. C. (2007). Validation of SYBR green I fluorescence assay for malaria drug screening. Antimicrobial Agents and Chemotherapy, 51(6), 1926–1933.
Laksemi, D. A., Sukrama, I. D. M., Suwanti, L. T., Sudarmaja, I. M., Damayanti, P. A., Tunas, I. K., et al. (2022). Medicinal plants with antimalarial potential: A comprehensive review. Tropical Journal of Natural Product Research, 6(3), 287–298.
Lalchhandama, K. (2017). Plasmodium falciparum erythrocyte membrane protein 1. Wiki Journal of Medicine, 4(1), 1–8.
Leela, N., Prommana, P., Kamchonwongpaisan, S., Taechalertpaisarn, T., & Shaw, P. J. (2024). Antimalarial target vulnerability of Plasmodium falciparum methionine synthase. PeerJ, 12, e16595. https://doi.org/10.7717/peerj.16595
Ma, N., Zhang, Z., Liao, F., Jiang, T., & Tu, Y. (2020). The birth of artemisinin. Pharmacology & Therapeutics, 216, 107658.
Ma, R., Lian, T., Huang, R., Renn, J. P., Petersen, J. D., Zimmerberg, J., Duffy, P. E., et al. (2021). Structural basis for placental malaria mediated by VAR2CSA. Nature Microbiology, 6(3), 380–391.
Miller, L. H., Rojas-Jaimes, J., Low, L. M., & Corbellini, G. (2022). Historical records on the discovery of quinine. The American Journal of Tropical Medicine and Hygiene, 108(1), 7–11.
Mueller, D., Davis, R. A., Duffy, S., Avery, V. M., Camp, D., & Quinn, R. J. (2009). Antimalarial activity of azafluorenone alkaloids from Mitrephora diversifolia. Journal of Natural Products, 72(8), 1538–1540.
Njeru, S. N., & Muema, J. M. (2021). Cytotoxicity of Aspilia pluriseta extract fractions. BMC Research Notes, 14, 57. https://doi.org/10.1186/s13104-021-05472-4
Packard, R. M. (2014). Origins of antimalarial-drug resistance. New England Journal of Medicine, 371(5), 397–399.
Passarini, G. M., Ferreira, A. S., Moreira-Dill, L. S., Zanchi, F. B., Jesus, A. G. D., Facundo, V. A., et al. (2022). Triterpenes from Combretum leprosum with antiplasmodial activity. Journal of the Brazilian Chemical Society, 33(5), 483–490.
Perveen, K., & Alwathnani, H. A. (2013). Antifungal activity of cyanobacteria extracts. Asian Journal of Chemistry, 25(13), 7531.
Perveen, K., Bukhari, N. A., Al Masoudi, L. M., Alqahtani, A. N., Alruways, M. W., & Alkhattaf, F. S. (2022). Antifungal potential of Chlorella vulgaris. Saudi Journal of Biological Sciences, 29(4), 2501–2505.
Prawat, U., Phupornprasert, D., Butsuri, A., Salae, A. W., Boonsri, S., & Tuntiwachwuttikul, P. (2012). Flavonoids from Friesodielsia discolor. Phytochemistry Letters, 5(4), 809–813.
Promchai, T., Jaidee, A., Cheenpracha, S., Trisuwan, K., Rattanajak, R., Kamchonwongpaisan, S., et al. (2016). Antimalarial alkaloids from Miliusa cuneata. Journal of Natural Products, 79(4), 978–983.
Ralte, L., Sailo, H., & Singh, Y. T. (2024). Ethnobotanical study of medicinal plants of Mizoram. Journal of Ethnobiology and Ethnomedicine, 20(1), 2. https://doi.org/10.1186/s13002-023-00642-z
Rasoanaivo, P., Ratsimamanga-Urverg, S., Ramanitrahasimbola, D., Rafatro, H., & Rakoto Ratsimamanga, A. (1999). Screening of Malagasy plant extracts for antimalarial activity. Journal of Ethnopharmacology, 64(2), 117–126.
Salman, H. A., Yaakop, A. S., Al-Rimawi, F., Makhtar, A. M. A., Mousa, M., Semreen, M. H., et al. (2024). Ephedra alte extracts: GC–MS and antimicrobial activity. Heliyon, 10(5), e27051.
Schwikkard, S., & van Heerden, F. R. (2002). Antimalarial activity of plant metabolites. Natural Product Reports, 19(6), 675–692.
Severini, C., & Menegon, M. (2015). Resistance to antimalarial drugs. Journal of Global Antimicrobial Resistance, 3(2), 58–63.
Sharma, H. K., Chhangte, L., & Dolui, A. K. (2001). Traditional medicinal plants in Mizoram, India. Fitoterapia, 72(2), 146–161.
Singh, H., Bhushan, S., Arora, R., Buttar, H. S., Arora, S., & Singh, B. (2017). Alternative strategies for neuropathic pain. Biomedicine & Pharmacotherapy, 92, 634–650.
Singh, K., Joshi, P., Mahar, R., Baranwal, P., Shukla, S. K., Tripathi, R., et al. (2018). Antiplasmodial purine-based C-nucleoside analogues. MedChemComm, 9(7), 1232–1238.
Su, X., Stadler, R. V., Xu, F., & Wu, J. (2023). Malaria genomics and vaccine development. Pathogens, 12(8), 1061.
Summers, R. L., Nash, M. N., & Martin, R. E. (2012). Role of PfCRT in drug resistance. Cellular and Molecular Life Sciences, 69, 1967–1995.
Tanaka, N., Nakanishi, M., Kusakabe, Y., Shiraiwa, K., Yabe, S., Ito, Y., et al. (2004). Crystal structure of SAHH from Plasmodium falciparum. Journal of Molecular Biology, 343(4), 1007–1017.
Thellier, M., Gemegah, A. A. J., & Tantaoui, I. (2024). Global fight against malaria (1900–2022). Journal of Clinical Medicine, 13(19), 5680.
Trager, W., & Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science, 193(4254), 673–675.
Trott, O., & Olson, A. J. (2010). AutoDock Vina docking software. Journal of Computational Chemistry, 31(2), 455–461.
Ursos, L. M., & Roepe, P. D. (2002). Chloroquine resistance in Plasmodium falciparum. Medicinal Research Reviews, 22(5), 465–491.
Van Der Hoogte, A. R., & Pieters, T. (2016). Quinine and malaria history. Journal of the History of Medicine and Allied Sciences, 71(2), 197–225.
Ward, K. E., Fidock, D. A., & Bridgford, J. L. (2022). Artemisinin resistance. Current Opinion in Microbiology, 69, 102193.
Weiss, D. J., Lucas, T. C., Nguyen, M., Nandi, A. K., Bisanzio, D., Battle, K. E., et al. (2019). Global malaria prevalence mapping. The Lancet, 394(10195), 322–331.
White, N. J., & Chotivanich, K. (2024). Artemisinin-resistant malaria. Clinical Microbiology Reviews, 37(4), e00109-24.
Willcox, M. (2011). Improved traditional phytomedicines for malaria. Planta Medica, 77(6), 662–671.
WHO. (2024). World Malaria Report 2024. World Health Organization, Geneva.
Woodland, J. G., & Chibale, K. (2022). Quinine fever. Nature Chemistry, 14(1), 112.
Zhang, H., Qiu, S., Tamez, P., Tan, G. T., Aydogmus, Z., Hung, N. V., et al. (2002). Decursivine: A new antimalarial indole alkaloid. Pharmaceutical Biology, 40(3), 221–224.
Zhao, M. X., Cai, J., Yang, Y., Xu, J., Liu, W. Y., Akihisa, T., et al. (2023). Alstonia (Apocynaceae): Traditional uses and pharmacology. Arabian Journal of Chemistry, 16(8), 104857.

