FOLIAR APPLICATION OF NANO IRON OXIDE ENHANCES THE GROWTH, YIELD AND OIL CONTENT OF GROUNDNUT (Arachis hypogaea L.) IN CALCAREOUS VERTISOLS

Authors

  • V Manasa Indian Institute of Rice Research, Rajendranagar - 500 030, Telangana (India)
  • N S Hebsur University of Agricultural Sciences, Dharwad - 580 005, Karnataka (India)
  • B N Aravind Kumar University of Agricultural Sciences, Dharwad - 580 005, Karnataka (India)
  • P L Patil University of Agricultural Sciences, Dharwad - 580 005, Karnataka (India)
  • M Hebbara University of Agricultural Sciences, Dharwad - 580 005, Karnataka (India)
  • R Gobinath Indian Institute of Rice Research, Rajendranagar - 500 030, Telangana (India)
  • S Bandeppa Indian Institute of Rice Research, Rajendranagar - 500 030, Telangana (India)
  • K Surekha Indian Institute of Rice Research, Rajendranagar - 500 030, Telangana (India)
  • M B B Prasad Babu Indian Institute of Rice Research, Rajendranagar - 500 030, Telangana (India)

DOI:

https://doi.org/10.48165/abr.2025.27.01.21

Keywords:

Calcareous soils, groundnut, iron deficiency, nano-iron formulations, yield, oil content

Abstract

Iron deficiency is a widespread nutritional problem, particularly in plants grown on calcareous and high pH soils. This study evaluated the impact of foliar application of nano iron oxide (Fe₂O₃ NPs) on the growth, yield attributes, and oil content of groundnut (Arachis hypogaea L.) under controlled pot culture conditions in a calcareous vertisol. Treatments included soil-applied ferrous sulphate, foliar-applied conventional ferrous sulphate, and various concentrations of nano-iron oxide (100 to 1500 ppm) applied 30 days after sowing. Among all treatments, foliar application of nano iron @ 1000 ppm recorded the best results, significantly enhancing dry matter production (69.37 g), root parameters, number of pods per plant (58.0), kernels per plant (89.33), pod dry weight (30.5 g/plant), kernel dry weight (23.2 g/plant), oil content (48.1%), oil yield (11.24 g/plant), and crude protein (26.75%). Yield improvement was 46% and 35% higher compared to the recommended practice and foliar FeSO₄ application, respectively. The control treatment showed the lowest performance in all parameters.

Downloads

Download data is not yet available.

Author Biography

  • V Manasa, Indian Institute of Rice Research, Rajendranagar - 500 030, Telangana (India)

    University of Agricultural Sciences, Dharwad - 580 005, Karnataka (India)

References

Alhammad, B.A., Ahmad, A., Seleiman, M.F., & Tola, E. (2023). Seed priming with nanoparticles and 24-epibrassinolide improved seed germination and enzymatic performance of Zea mays L. in salt-stressed soil. Plants, 12, 690. [https://doi.org/10.3390/plants12040690].

Alidoust, D., & Isoda, A. (2013). Effect of γ-Fe₂O₃ nanoparticles on photosynthetic characteristics of soybean (Glycine max (L.) Merr.): Foliar spray versus soil amendment. Acta Physiologiae Plantarum, 35, 3365–3375.

Benzon, H.R.L., Rubenecia, M.R.U., Ultra, V.U. Jr., & Lee, S.C. (2015). Nano-fertilizer affects the growth, development and chemical properties of rice. International Journal of Agronomy and Agricultural Research, 7, 105–117.

Cao, X., Yue, L., Wang, C., Luo, X., Zhang, C., Zhao, X., et al. (2022). Foliar application with iron oxide nanomaterials stimulates nitrogen fixation, yield, and nutritional quality of soybean. Science of the Total Environment, 16(1), 1170–1181.

Chen, L., Hu, Z., Chen, W., Xu, Z., Hao, C., Lakshmanan, P., et al. (2023). Comparative study of the effectiveness of nano-sized iron-containing particles as a foliar top-dressing of peanut in rainy conditions. Agricultural Water Management, 286, 108392. [https://doi.org/10.1016/j.agwat.2023.108392].

Cui, Z., Li, Y., Zhang, H., Qin, P., Hu, X., Wang, J., et al. (2022). Lighting up agricultural sustainability in the new era through nanozymology: An overview of classifications and their agricultural applications. Journal of Agricultural and Food Chemistry, 70, 13445–13463.

D’Amato, R., De Feudis, M., Troni, E., Gualtieri, S., Soldati, R., Famiani, F., et al. (2022). Agronomic potential of two different glass-based materials as novel inorganic slow-release iron fertilizers. Journal of the Science of Food and Agriculture, 102(4), 1660–1664.

Deepa, M., Sudhakar, P., & Nagamadhuri, K.V. (2015). First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique. Applied Nanoscience, 5, 545–551.

Dehbi, A., Dehmani, Y., Omari, H., Lammini, A., Elazhari, K., & Abdallaoui, A. (2020). Hematite iron oxide nanoparticles (α-Fe₂O₃) synthesis and modelling adsorption of malachite green. Journal of Environmental Chemical Engineering, 8(1), 103394. [https://doi.org/10.1016/j.jece.2019.103394].

Faizan, M., Karabulut, F., Khan, I., Akhtar, M.S., & Alam, P. (2024). Emergence of nanotechnology in efficient fertilizer management in soil. South African Journal of Botany, 164, 242–249.

Garg, D., Sridhar, K., Inbaraj, S., Chawla, P., Tripathi, M., & Sharma, M. (2023). Nano-biofertilizer formulations for agriculture: A systematic review on recent advances and prospective applications. Bioengineering, 10(9), 1010. [https://doi.org/10.3390/bioengineering10091010].

Ghafariyan, M.H., Malakouti, M.J., Dadpour, M.R., Stroeve, P., & Mahmoudi, M. (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environmental Science and Technology, 47, 10645–10652.

Gohari, A.A., & Nayaki, S.A.N. (2010). Effects of iron and nitrogen fertilizers on yield and yield components of peanut (Arachis hypogaea L.) in Astaneh Ashrafiyeh, Iran. American-Eurasian Journal of Agricultural and Environmental Science, 9(3), 256–262.

Gomez, K.A., & Gomez, A.A. (1984). Statistical Procedures for Agricultural Research (2nd ed.). John Wiley and Sons, New York, USA.

Hu, J., Guo, H., Li, J., Wang, Y., Xiao, L., & Xing, B. (2017). Interaction of gamma-Fe₂O₃ nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application. Journal of Nanobiotechnology, 15, 51. [https://doi.org/10.1186/s12951-017-0286-1].

John, K.S., Parvathi, M.S., Krishna, A.S., Sidharth, A., & Geetha, T. (2024). Ocimum gratissimum mediated green synthesized iron oxide nanoparticles as a plausible nanofertilizer for peanut plant (Arachis hypogaea). Discover Applied Sciences, 6(10), 542. [https://doi.org/10.1007/s42452-024-06241-1].

Kumar, J.A., Krithiga, T., Manigandan, Sathish, S., & Renita, A.A., et al. (2021). A focus to green synthesis of metal/metal based oxide nanoparticles: Various mechanisms and applications towards ecological approach. Journal of Cleaner Production, 324, 129198. [https://doi.org/10.1016/j.jclepro.2021.129198].

Kumbhakar, P., Ray, S.S., & Stepanov, A.L. (2014). Optical properties of nanoparticles and nanocomposites. Journal of Nanomaterials, 2014, 970964. [http://dx.doi.org/10.1155/2014/181365].

Li, J., Hu, J., Ma, C., Wang, Y., Wu, C., Huang, J., & Xing, B. (2016). Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe₂O₃) nanoparticles in corn (Zea mays L.). Chemosphere, 159, 326–334.

Li, J., Hu, J., Xiao, L., Wang, Y., & Wang, X. (2018). Interaction mechanisms between alpha-Fe₂O₃, gamma-Fe₂O₃ and Fe₃O₄ nanoparticles and Citrus maxima seedlings. Science of the Total Environment, 625, 677–685.

Lindsay, W.L., & Norvell, W.A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–428.

Lowry, G.V., Avellan, A., & Gilbertson, L.M. (2019). Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature Nanotechnology, 14(6), 517–522.

Marschner, H. (1995). Mineral Nutrition of Higher Plants (2nd ed.). Academic Press, New York, USA.

Mitra, R., Yadav, P., Usha, K., & Singh, B. (2022). Regulatory role of organic acids and phytochelators in influencing the rhizospheric availability of phosphorus and iron and their uptake by plants. Plant Physiology Reports, 27, 193–206.

Monjezi, F., Vazin, F., & Hassanzadehdelouei, M. (2013). Effects of iron and zinc spray on yield and yield components of wheat (Triticum aestivum L.) in drought stress. Cercetări Agronomice în Moldova, 46, 23–32.

Muhammadi, M., Majnoun Hoseini, N., Chaichi, M.R., Alipour, H., Dashtaki, M., & Safikhani, S. (2018). Influence of nano-iron oxide and zinc sulfate on physiological characteristics of peppermint. Communications in Soil Science and Plant Analysis, 49, 2315–2326.

Natarajan, S., Harini, K., Gajula, G.P., Sarmento, B., Neves-Petersen, M.T., & Thiagarajan, V. (2019). Multifunctional magnetic iron oxide nanoparticles: Diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Materials, 1(1), 2. [https://doi.org/10.1186/s42833-019-0001-8].

Poonia, T., Bhunia, S.R., & Choudhary, R. (2018). Effect of iron fertilization on nitrogen and iron content, uptake and quality parameters of groundnut (Arachis hypogaea L.). International Journal of Current Microbiology and Applied Sciences, 7(3), 2297–2303.

Reshma, Z., & Meenal, K. (2022). Foliar application of biosynthesised zinc nanoparticles as a strategy for ferti-fortification by improving yield, zinc content and zinc use efficiency in amaranth. Heliyon, 8(10), e10912. [https://doi.org/10.1016/j.heliyon.2022.e10912].

Rodrigues, S.M., Demokritou, P., Dokoozlian, N., Hendren, C.O., Karn, B., Mauter, M.S., et al. (2017). Nanotechnology for sustainable food production: Promising opportunities and scientific challenges. Environmental Science: Nano, 4, 767–781.

Rui, M., Ma, C., Hao, Y., Guo, J., Rui, Y., Tang, X., et al. (2016). Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science, 7, 815. [https://doi.org/10.3389/fpls.2016.00815].

Rui, M., Ma, C., White, J.C., Hao, Y., Wang, Y., Tang, X., et al. (2018). Metal oxide nanoparticles alter peanut (Arachis hypogaea L.) physiological response and reduce nutritional quality: A life cycle study. Environmental Science: Nano, 5(9), 2088–2102.

Sahu, S., Kandoliya, U.K., & Gajera, H.P. (2023). Impact of iron oxide nanoparticles on nutritional parameters and yield attributes of groundnut grown in calcareous soils. The Pharma Innovation Journal, 12(9), 2246–2250.

Sharawat, K.L., & Burford, J.R. (1982). Modification of alkaline permanganate method for assessing the availability of soil nitrogen in upland soils. Soil Science, 133, 53–57.

Sheykhbaglou, R., Sedghi, M., Shishevan, M.T., & Sharifi, R.S. (2010). Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae, 2(2), 112–113.

Sheykhbaglou, R., Mohammad, S., & Bahram, F.A. (2018). The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (Glycine max L.) seed. Anais da Academia Brasileira de Ciências, 90. [https://doi.org/10.1590/0001-3765201820160251].

Shirsat, S., & Suthindhiran, K. (2024). Iron oxide nanoparticles as iron micronutrient fertilizer – Opportunities and limitations. Journal of Plant Nutrition and Soil Science, 187(5), 565–588.

Souad, A.E., Mohammed, M.A., Mohammed, S.K., & Elsherbini, Y.A.H. (2013). Effect of magnetite nano fertilizer on growth and yield of Ocimum basilicum. International Journal of Indigenous Medicinal Plants, 46(3), 1286–1292.

Sparks, D.L. (Ed.). (1996). Methods of Soil Analysis, Part 3: Chemical Methods. Soil Science Society of America, Washington, USA.

Zhang, C.M., Zhao, W.Y., Gao, A.X., Su, T.T., Wang, Y.K., Zhang, Y.Q., et al. (2018). How could agronomic biofortification of rice be an alternative strategy with higher cost-effectiveness for human iron and zinc deficiency in China. Food and Nutrition Bulletin, 39, 246–259.

Published

2025-07-25

How to Cite

FOLIAR APPLICATION OF NANO IRON OXIDE ENHANCES THE GROWTH, YIELD AND OIL CONTENT OF GROUNDNUT (Arachis hypogaea L.) IN CALCAREOUS VERTISOLS . (2025). Applied Biological Research, 27(2), 213-222. https://doi.org/10.48165/abr.2025.27.01.21