MODULATION OF THE EXPRESSION OF CYP11A1, StAR AND CYP19 GENES BY NARINGENIN AND THE EXTRACTS OF Boerhaevia diffusa AND Asparagus racemosus
DOI:
https://doi.org/10.48165/abr.2025.27.01.39Keywords:
Asparagus racemosus, Boerhaevia diffusa, CYP11A1, CYP19, MCF-7, qRT-PCR, StARAbstract
Initial trials on MCF-7 breast carcinoma cells with the crude methanolic extracts of Asparagus racemosus tubers (MAR) and Boerhaevia diffusa leaves (MBD) revealed pro-oestrogenic and anti-oestrogenic activities, respectively. To evaluate their effects on steroidogenic pathway, the present study assessed the modulation of expression of steroidogenic acute regulatory protein (StAR), cytochrome P45011A1 (CYP11AI), and aromatase (CYP19) genes in extract- treated MCF-7 cells. Naringenin, a known CYP450 inhibitor, served as the positive control. Shade-dried plant materials were extracted in methanol, and cytotoxicity was evaluated by MTT assay to determine IC50 values. The IC50 of MAR, MBD and naringenin were 267, 170, and 395 μg mL ̈1, respectively. Cells were treated with IC50, half, and double IC50 doses of the test materials for 96 h, followed by RNA extraction and qRT-PCR analysis using GAPDH as a reference gene. MBD and naringenin significantly downregulated StAR and CYP19, indicating antioestrogenic effects, whereas MAR upregulated CYP1A1 expression, suggesting enhanced steroidogenesis. The findings indicate that A. racemosus promotes oestrogen biosynthesis and may be beneficial in hormone deficiency, while B. diffusa exhibits antioestrogenic and potential anticancer activity in hormone-responsive cancers.
Downloads
References
Bakrim, S., Benkhaira, N., Bourais, I., Benali, T., Lee, L. H., & El Omari, N., et al. (2022). Health benefits and pharmacological properties of stigmasterol. Antioxidants, 11(10), 1912. https://doi.org/10.3390/antiox11101912
Balam, F. H., Ahmadi, Z. S., & Ghorbani, A. (2020). Inhibitory effect of chrysin on estrogen biosynthesis by suppression of enzyme aromatase (CYP19): A systematic review. Heliyon, 6, e03557. https://doi.org/10.1016/j.heliyon.2020.e03557
Benny, B., Krishna, A. S., Sujith, S., Preethy, J., & Uma, R. (2022a). Cytotoxic and antiproliferative potential of methanolic extract of Mallotus phillippensis in MCF-7 cell line. Journal of Phyto Pharmacology, 11, 60–63.
Benny, B., Krishna, A. S., Sujith, S., Preethy, J., & Uma, R. (2022b). Differential expression of steroidogenic genes in MCF-7 cell lines by methanolic extract of Mallotus phillippensis. Journal of Phyto Pharmacology, 11, 378–385.
Bhatnagar, M., & Sisodia, S. S. (2006). Antisecretory and antiulcer activity of Asparagus racemosus Willd against indomethacin plus pyloric ligation-induced gastric ulcer in rats. Journal of Herbal Pharmacotherapy, 6, 13–20.
Cormier, M., Ghouili, F., Roumaud, P., Martin, L. J., & Touaibia, M. (2017). Influence of flavonols and quercetin derivative compounds on MA-10 Leydig cells steroidogenic gene expressions. Toxicology In Vitro, 44, 111–121.
Dhanusha, G., Sujith, S., Nisha, A. R., Kariyil, B. J., Raji, K., Aathira, K. K., et al. (2021a). Modulation of steroid hormone synthesis by methanolic extracts of Boerhavia diffusa. Journal of Pharmacognosy and Phytochemistry, 10, 1206–1264.
Dhanusha, G., Sujith, S., Nisha, A. R., Aathira, K. K., & Haima, J. S. (2021b). Cytotoxic and antiproliferative potential of methanolic extracts of Asparagus racemosus in MDA-MB-231 cells. Pharma Innovation Journal, 10, 355–358.
Dhanusha, G., Sujith, S., Nisha, A. R., Bibu, J. K., Raji, K., Aathira, K. K., et al. (2021c). Modulation of steroid hormone synthesis by alcoholic extract of Asparagus racemosus on MCF-7 cells. Journal of Phyto Pharmacology, 10, 429–432.
Duda-Madej, A., Stecko, J., Sobieraj, J., Szymańska, N., & Kozłowska, J. (2022). Naringenin and its derivatives - Health-promoting phytobiotic against resistant bacteria and fungi in humans. Antibiotics, 11(11), 1628. https://doi.org/10.3390/antibiotics11111628
Faramarzi, F., Alimohammadi, M., Rahimi, A., Alizadeh-Navaei, R., Shakib, R. J., & Rafiei, A. (2022). Naringenin induces intrinsic and extrinsic apoptotic signaling pathways in cancer cells: A systematic review and meta-analysis of in vitro and in vivo data. Nutrition Research, 105, 33–52.
Gazouli, M., Yao, Z. X., Boujrad, N., Corton, J. C., Culty, M., & Papadopoulos, V. (2002). Effect of peroxisome proliferators on Leydig cell peripheral-type benzodiazepine receptor gene expression, hormone-stimulated cholesterol transport, and steroidogenesis: Role of the peroxisome proliferator-activator receptor alpha. Endocrinology, 143, 2571–2583.
Ghosh, A., Kar, T. K., Sil, S., Barman, A., & Chattopadhya, S. (2025). Therapeutic potential of Asparagus racemosus and Vitex negundo against polycystic ovarian syndrome in Wistar rats: Exploring an oxidative stress independent mechanism. Macedonian Veterinary Review, 48(2), i–xii.
Ghosh, D., Griswold, J., Erman, M., & Pangborn, W. (2009). Structural basis for androgen specificity and estrogen synthesis in human aromatase. Nature, 457, 219–223.
Grattan, B. J. (2013). Plant sterols as anticancer nutrients: Evidence for their role in breast cancer. Nutrients, 5(2), 359–387.
Guo, J., Yuan, Y., Lu, D., Du, B., Xiong, L., Shi, J., et al. (2014). Two natural products, trans-phytol and (22E)-ergosta-6,9,22-triene-3β,5α,8α-triol, inhibit the biosynthesis of estrogen in human ovarian granulosa cells by aromatase (CYP19). Toxicology and Applied Pharmacology, 279, 23–32.
Kaci, H., Bodnárová, S., Fliszár-Nyúl, E., Lemli, B., Pelantová, H., Valentová, K., et al. (2023). Interaction of luteolin, naringenin, and their sulfate and glucuronide conjugates with human serum albumin, cytochrome P450 (CYP2C9, CYP2C19, and CYP3A4) enzymes and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Biomedicine and Pharmacotherapy, 157, 114078. https://doi.org/10.1016/j.biopha.2022.114078
Kamat, A., Hinshelwood, M. M., Murry, B. A., & Mendelson, C. R. (2002). Mechanisms in tissue-specific regulation of estrogen biosynthesis in humans. Trends in Endocrinology and Metabolism, 13, 122–128.
Lephart, E. D. (2015). Modulation of aromatase by phytoestrogens. Enzyme Research, Article ID 594656. http://dx.doi.org/10.1155/2015/594656
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2^–ΔΔCT method. Methods, 25, 402–408.
Lu, W. J., Ferlito, V., Xu., Flockhart, D. A., & Caccamese, S. (2011). Enantiomers of naringenin as pleiotropic, stereoselective inhibitors of cytochrome P450 isoforms. Chirality, 23, 891–896.
Merviel, P., James, P., Bouée, S., Le Guillou, M., Rince, C., Nachtergaele, C., & Kerlan, V. (2021). Impact of myo-inositol treatment in women with polycystic ovary syndrome in assisted reproductive technologies. Reproductive Health, 18, 13. https://doi.org/10.1186/s12978-021-01073-3
Muntgantiwar, A. A., Nair, A. M., Shinde, U. A., & Saraf, M. N. (1997). Effect of stress on plasma and adrenal cortisol levels and immune responsiveness in rats: Modulation by alkaloidal fraction of Boerhaavia diffusa. Fitoterapia, 68, 498–500.
Nair, D. B., & Sujith, S. (2023). Evaluation of cytotoxic effect of methanolic extract of Saraca asoca bark MCF-7 cell line. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.11.060
Ohno, S., Shinoda, S., Toyoshima, S., Nakazawa, H., Makino, T., & Nakajin, S. (2002). Effects of flavonoid phytochemicals on cortisol production and on activities of steroidogenic enzymes in human adrenocortical H295R cells. The Journal of Steroid Biochemistry and Molecular Biology, 80, 355–363.
Ranzenigo, G., Caloni, F., Cremonesi, F., Aad, P. Y., & Spicer, L. J. (2008). Effects of Fusarium mycotoxins on steroid production by porcine granulosa cells. Animal Reproduction Science, 107, 115–130.
Rice, S., Mason, H. D., & Whitehead, S. A. (2006). Phytoestrogens and their low dose combinations inhibit mRNA expression and activity of aromatase in human granulosa-luteal cells. The Journal of Steroid Biochemistry and Molecular Biology, 101, 216–225.
Sanderson, J. T., Hordijk, J., Denison, M. S., Springsteel, M. F., Nantz, M. H., & Van Den Berg, M. (2004). Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells. Toxicological Sciences, 82, 70–79.
Seif, M., Abd El-Aziz, T., Sayed, M., & Wang, Z. (2021). Zingiber officinale ethanolic extract attenuates oxidative stress, steroidogenic gene expression alterations, and testicular histopathology induced by sodium arsenite in male rats. Environmental Science and Pollution Research, 28, 1–16.
Sirotkin, A. V., & Harrath, A. H. (2014). Phytoestrogens and their effects. European Journal of Pharmacology, 741, 230–236.
Sreeja, S., & Sreeja, S. (2009). An in vitro study on antiproliferative and antiestrogenic effects of Boerhaavia diffusa L. extracts. Journal of Ethnopharmacology, 126, 221–225.
Stocco, D. M. (2001a). StAR protein and the regulation of steroid hormone biosynthesis. Annual Reviews in Physiology, 63, 193–213.
Stocco, D. M. (2001b). Tracking the role of a star in the sky of the new millennium. Molecular Endocrinology, 15, 1245–1254.
Visavadiya, N. P., Soni, B., & Madamwar, D. (2009). Suppression of reactive oxygen species and nitric oxide by Asparagus racemosus root extract using in vitro studies. Cell and Molecular Biology, 55, 1083–1095.

