MOLECULAR TRANSPORT BY VARYING THE SIZE OF NANOPORE IN THE MEMBRANE OF GUV USING SIMULATION
DOI:
https://doi.org/10.48165/abr.2025.27.01.22Keywords:
Cell permeabilization, COMSOL, fluorescent probes, giant unilamellar vesicles (GUVs), molecular transportAbstract
Transient pore formation in lipid membranes plays a critical role in diverse biological and synthetic processes. Understanding the molecular transport mechanism through these membrane pores is a key step in the optimization of drug release and membrane integrity regulation. In this study, we investigated molecular transport through nanopores formed in the membrane of Giant Unilamellar Vesicles (GUVs) using finite element simulation in COMSOL Multiphysics. We explored the impact of nanopore diameter (16–60 nm) and fluorescent probe size (RSE 0.74–5.00 nm) on molecular transport. Using Fick's law of diffusion and the Stokes-Einstein equation, we calculated leakage rate constants (kleak) for various fluorescent probe sizes. Simulations revealed that larger nanopores significantly increased leakage rates, whereas increasing probe size led to slower leakage. Additionally, larger suspension areas accelerated molecular clearance from the vesicle, amplifying overall flux. The model was validated against experimental data on magainin 2-induced pores, showing strong agreement and confirming the accuracy of our approach. These findings provide insight into nanopore-mediated transport and offer a predictive framework for designing membrane-permeabilizing systems in synthetic biology and drug delivery applications.
Downloads
References
Ahamed, M.K., Ahmed, M., & Karal, M.A.S. (2022). Quantification of pulsed electric field for the rupture of giant vesicles with various surface charges, cholesterols and osmotic pressures. PLoS ONE, 17(1), e0262555. https://doi.org/10.1371/journal.pone.0262555
Alam Shibly, S.U., Ghatak, C., Sayem Karal, M.A., Moniruzzaman, M., & Yamazaki, M. (2016). Experimental estimation of membrane tension induced by osmotic pressure. Biophysical Journal, 111(10), 2190–2201.
Asaduzzaman, M., Emon, S., Ishtiaque, M.S., Hossain, M.I., Karal, M.A.S., Billah, M.M., et al. (2025). Molecular transport through nano-sized multipores of lipid vesicles: A COMSOL simulation study. European Biophysics Journal, 54(3–4), 159–169.
Berthier, J., & Silberzan, P. (2010). Microfluidics for Biotechnology. Artech House.
Boukany, P.E., Morss, A., Liao, W., Henslee, B., Jung, H., Zhang, X., et al. (2011). Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nature Nanotechnology, 6(11), 747–754.
Casas‐Rodrigo, I., Vornholt, T., Castiglione, K., Roberts, T.M., Jeschek, M., & Ward, T.R., et al. (2025). Permeabilisation of the outer membrane of Escherichia coli for enhanced transport of complex molecules. Microbial Biotechnology, 18(3), e70122. https://doi.org/10.1111/1751-7915.70122
]Casciola, M., & Tarek, M. (2016). A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochimica et Biophysica Acta - Biomembranes, 1858(10), 2278–2289.
Chang, D.C., & Reese, T.S. (1990). Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophysical Journal, 58(1), 1–12.
Datta, A., & Rakesh, V. (2010). An Introduction to Modelling of Transport Processes: Applications to Biomedical Systems. Cambridge University Press.
Emon, S., Sakib, S., Bardhan, N., Saha, S., Asaduzzaman, M., & Alam, M.K. (2025). Molecular dynamics of electroporation and quantitative analysis of molecular transport. Journal of Biological Physics, 51(1), 18. https://doi.org/10.1007/s10867-025-09682-w
Gaur, A.S., Kumar, V., & Singh, D. (2014). Institutions, resources, and internationalization of emerging economy firms. Journal of World Business, 49(1), 12–20.
Gómez, V., De La Pava, I., & Henao, O. (2014). Stochastic diffusion of calcium ions through a nanopore in the cell membrane created by electroporation. Proceedings of the 2014 COMSOL Conference, Boston, USA.
Hasan, M., Karal, M.A.S., Levadnyy, V., & Yamazaki, M. (2018). Mechanism of initial stage of pore formation induced by antimicrobial peptide magainin 2. Langmuir, 34(10), 3349–3362.
Jayasooriya, V., & Nawarathna, D. (2017). Simulation of molecular transport through an electroporated cell using COMSOL Multiphysics. 13th COMSOL Conference, Boston, USA.
Karal, M.A.S., Ahamed, M.K., Rahman, M., Ahmed, M., Shakil, M.M., & Siddique-e-Rabbani, K. (2019). Effects of electrically-induced constant tension on giant unilamellar vesicles using irreversible electroporation. European Biophysics Journal, 48(8), 731–741.
Karal, M.A.S., Alam, J.M., Takahashi, T., Levadny, V., & Yamazaki, M. (2015). Stretch-activated pore of the antimicrobial peptide, magainin 2. Langmuir, 31(11), 3391–3401.
Karal, M.A.S., Islam, M.K., & Mahbub, Z.B. (2020). Study of molecular transport through a single nanopore in the membrane of a giant unilamellar vesicle using COMSOL simulation. European Biophysics Journal, 49(1), 59–69.
Karal, M.A.S., Levadnyy, V., Tsuboi, T., Belaya, M., & Yamazaki, M. (2015). Electrostatic interaction effects on tension-induced pore formation in lipid membranes. Physical Review E, 92(1), 012708. https://doi.org/10.1103/PhysRevE.92.012708
Karal, M.A.S., Levadnyy, V., & Yamazaki, M. (2016). Analysis of constant tension-induced rupture of lipid membranes using activation energy. Physical Chemistry Chemical Physics, 18(19), 13487–13495.
Karal, M.A.S., Rahman, M., Ahamed, M.K., Shibly, S.U.A., Ahmed, M., & Shakil, M.M. (2019). Low cost non-electromechanical technique for the purification of giant unilamellar vesicles. European Biophysics Journal, 48(4), 349–359.
Karal, M.A.S., & Yamazaki, M. (2015). Communication: Activation energy of tension-induced pore formation in lipid membranes. The Journal of Chemical Physics, 143(8), 081103. https://doi.org/10.1063/1.4930108
Kotnik, T., Rems, L., Tarek, M., & Miklavčič, D. (2019). Membrane electroporation and electro-permeabilization: Mechanisms and Models. Annual Review of Biophysics, 48(1), 63–91.
Liu, F., Su, R., Jiang, X., Wang, S., Mu, W., & Chang, L. (2024). Advanced micro/nano electroporation for gene therapy: Recent advances and future outlook. Nanoscale, 16(22), 10500–10521.
Movahed, S., & Li, D. (2012). Electrokinetic transport through the nanopores in cell membrane during electroporation. Journal of Colloid and Interface Science, 369(1), 442–452.
Nayak, S., & Herzog, R.W. (2010). Progress and prospects: Immune responses to viral vectors. Gene Therapy, 17(3), 295–304.
Rahman, F., Halder, S., Rahman, S., & Hossen, M.L. (2025). Investigating the therapeutic ability of novel antimicrobial peptide dendropsophin 1 and its analogues through membrane disruption and monomeric pore formation. The Journal of Physical Chemistry B, 129(12), 3171–3182.
Rawicz, W., Olbrich, K.C., McIntosh, T., Needham, D., & Evans, E. (2000). Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophysical Journal, 79(1), 328–339.
Roiter, Y., Ornatska, M., Rammohan, A.R., Balakrishnan, J., Heine, D.R., & Minko, S. (2008). Interaction of nanoparticles with lipid membrane. Nano Letters, 8(3), 941–944.
Roy, S.K., Karal, M.A.S., Kadir, M.A., & Rabbani, K.S. (2019). A new six-electrode electrical impedance technique for probing deep organs in the human body. European Biophysics Journal, 48(8), 711–719.
Saitoh, A., Takiguchi, K., Tanaka, Y., & Hotani, H. (1998). Opening-up of liposomal membranes by talin. Proceedings of the National Academy of Sciences, 95(3), 1026–1031.
Sengel, J.T., & Wallace, M.I. (2016). Imaging the dynamics of individual electropores. Proceedings of the National Academy of Sciences, 113(19), 5281–5286.
Sharmin, S., Islam, M.Z., Karal, M.A.S., Alam Shibly, S.U., Dohra, H., & Yamazaki, M. (2016). Effects of lipid composition on the entry of cell-penetrating peptide oligoarginine into single vesicles. Biochemistry, 55(30), 4154–4165.
Sikorska, E., Iłowska, E., Wyrzykowski, D., & Kwiatkowska, A. (2012). Membrane structure and interactions of peptide hormones with model lipid bilayers. Biochimica et Biophysica Acta - Biomembranes, 1818(12), 2982–2993.
Sözer, E.B., Haldar, S., Blank, P.S., Castellani, F., Vernier, P.T., & Zimmerberg, J. (2020). Dye transport through bilayers agrees with lipid electropore molecular dynamics. Biophysical Journal, 119(9), 1724–1734.
Spugnini, E.P., Arancia, G., Porrello, A., Colone, M., Formisano, G., Stringaro, A., et al. (2007). Ultrastructural modifications of cell membranes induced by “electroporation” on melanoma xenografts. Microscopy Research and Technique, 70(12), 1041–1050.
Stewart, M.P., Sharei, A., Ding, X., Sahay, G., Langer, R., & Jensen, K.F. (2016). In vitro and ex vivo strategies for intracellular delivery. Nature, 538(7624), 183–192.
Tamba, Y., Ariyama, H., Levadny, V., & Yamazaki, M. (2010). Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes. The Journal of Physical Chemistry B, 114(37), 12018–12026.
Tamba, Y., & Yamazaki, M. (2005). Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability. Biochemistry, 44(48), 15823–15833.
Tamba, Y., & Yamazaki, M. (2009). Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface. The Journal of Physical Chemistry B, 113(14), 4846–4852.
Tanaka, T., Tamba, Y., Masum, S.M., Yamashita, Y., & Yamazaki, M. (2002). La3+ and Gd3+ induce shape change of giant unilamellar vesicles of phosphatidylcholine. Biochimica et Biophysica Acta - Biomembranes, 1564(1), 173–182.
Teissie, J. (2017). Membrane permeabilization lifetime in experiments. In D. Miklavčič (Ed.), Handbook of Electroporation (pp. 61–75). Springer.
Vargason, A.M., Anselmo, A.C., & Mitragotri, S. (2021). The evolution of commercial drug delivery technologies. Nature Biomedical Engineering, 5(9), 951–967.
Yamashita, Y., Masum, S.M., Tanaka, T., & Yamazaki, M. (2002). Shape changes of giant unilamellar vesicles of phosphatidylcholine induced by a de novo designed peptide interacting with their membrane interface. Langmuir, 18(25), 9638–9641.
Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415(6870), 389–395.