Tinospora cordifolia GCMS profiling and cytotoxic effect on HCT 116- In vitro assay
DOI:
https://doi.org/10.48165/aabr.2025.2.2.02Keywords:
Alkaloid, Anticancer, Colon cancer, Antioxidant, AntibacterialAbstract
An assessment of Tinospora cordifolia extract’s (TCE) antimicrobial and antioxidant properties was undertaken in light of its possible application as cytotoxic against HCT116. Compounds from the stem were Soxhlet extracted with ethyl acetate and identified through GCMS. Antibacterial, antioxidant and HCT cytotoxicity of extract was studied by conventional standard methods. The GC–MS profile highlights a chemically diverse phytochemical composition, with both major and minor compounds potentially responsible for natural antimicrobial and antioxidant agent. The extract has broad spectrum antibacterial activity at concentration dependent manner against both Gram positive and negative clinical pathogens with relative inhibition 83 to 107%. Among the tested antioxidant assay the extract showed the strongest DPPH scavenging with an IC₅₀ value of 12.07 µg/mL, which, although higher than the standard ascorbic acid. Treatment of HCT116 colorectal carcinoma cells with TCE resulted in a dose-dependent reduction in cell viability. Nonlinear regression analysis of the MTT assay revealed an IC₅₀ value of 359 µg/ml, with viability decreasing from ~80% at 300 µg/ml to <10% at 900–1000 µg/ml. Morphological examination and apoptosis assays further confirmed that cell death was predominantly apoptotic nature of cancerous cells. The molecular docking of compounds 2-Fluoro-3-trifluoromethylbenzoic acid found to be strongest binding affinity and non-toxic drug likeness identified as promising new anticancer compound.
References
Ahmad, K., Hafeez, Z. B., Bhat, A. R., Rizvi, M. A., Thakur, S. C., Azam, A., & Athar, F. (2018). Antioxidant and apoptotic effects of Callistemon lanceolatus leaves and their compounds against human cancer cells. Biomedicine & Pharmacotherapy, 106, 1195–1209.
Ali, H., & Dixit, S. (2013). Extraction optimization of Tinospora cordifolia and assessment of the anticancer activity of its alkaloid palmatine. Scientific World Journal, 1–10.
Boro, A., Sujatha, K., Abidharini, J. D., Pallavi, P., Prabhu, J. P. A., & Anand, A. V. (2025). Evaluation of the antioxidative and qualitative properties of Tinospora cordifolia. Free Radicals and Antioxidants, 14(2), 126–130.
Butt, S. S., Badshah, Y., Shabbir, M., & Rafiq, M. (2022). Molecular docking using Chimera and AutoDock Vina software for nonbioinformaticians. JMIR Bioinformatics and Biotechnology, 1(1), e14232.
Chi, S., She, G., Han, D., Wang, W., Liu, Z., & Liu, B. (2016). Genus Tinospora: Ethnopharmacology, phytochemistry, and pharmacology. Evidence-Based Complementary and Alternative Medicine, Article ID 9232593.
Deepa, B., Babaji, H. V., Hosmani, J. V., Alamir, A. W. H., Mushtaq, S., Raj, A. T., & Patil, S. (2019). Effect of Tinospora cordifolia–derived phytocomponents on cancer: A systematic review. Applied Sciences, 9(23), 5147.
Ezhilarasu, K., Kasiranjan, A., Priya, S., & Kamaraj, A. (2023). The antibacterial effect of Tinospora cordifolia (Guduchi) and its role in combating antimicrobial resistance. Medeni Medical Journal, 38(3), 149–158.
Hussen, E. M., & Endalew, S. A. (2023). In vitro antioxidant and free radical scavenging activities of polar leaf extracts of Vernonia amygdalina. BMC Complementary Medicine and Therapies, 23, 146.
Kumar, D. V., Geethanjali, B., Avinash, K. O., Kumar, J. R., Chandrashekrappa, G. K., & Basalingappa, K. M. (2017). Tinospora cordifolia: The antimicrobial property of the leaves of Amruthaballi. JBMOA, 5, 147–156.
Nyalo, P. O., Omwenga, G. I., & Ngugi, M. P. (2023). Antibacterial properties and GC-MS analysis of ethyl acetate extracts of Xerophyta spekei and Grewia tembensis. Heliyon, 9(3), e14461.
Ononamadu, C. J., & Ibrahim, A. (2021). Molecular docking and prediction of ADME/drug-likeness properties of potentially active antidiabetic compounds isolated from aqueous methanol extracts of Gymnema sylvestre and Combretum micranthum. Biotechnologia, 102(1), 85–99.
Palmieri, A., Scapoli, L., Iapichino, A., Mercolini, L., Mandrone, M., Poli, F., Giannì, A. B., Baserga, C., & Martinelli, M. (2019). Berberine and Tinospora cordifolia exert a potential anticancer effect on colon cancer cells by acting on specific pathways. International Journal of Immunopathology and Pharmacology, 33, 2058738419855567.
Patil, S., Ashi, H., Hosmani, J., Almalki, A. Y., Alhazmi, Y. A., Mushtaq, S., Parveen, S., Baeshen, H. A., Varadarajan, S., Raj, A. T., Patil, V. R., & Vyas, N. (2021). Tinospora cordifolia inhibits oral cancer cells in a dose-dependent manner by inducing apoptosis and attenuating epithelial–mesenchymal transition. Saudi Journal of Biological Sciences, 28(8), 4553–4559.
Polu, P. R., Nayanbhirama, U., Khan, S., & Maheswari, R. (2017). Assessment of free radical scavenging and anti-proliferative activities of Tinospora cordifolia Miers. BMC Complementary and Alternative Medicine, 17(1), 457.
Prasad, B., & Chauhan, A. (2019). Anti-oxidant and antimicrobial studies of Tinospora cordifolia stems and roots under in-vitro condition. International Journal of Advanced Microbiology and Health Research, 3(1), 1–10.
Ren, X., Zhang, J., Dai, A., Sun, P., Zhang, Y., Jin, L., & Pan, L. (2024). Synthesis and biological evaluation of novel furopyridone derivatives as potent cytotoxic agents against esophageal cancer. International Journal of Molecular Sciences, 25(17), 9634.
Sellal, A., Belattar, R., & Bouzidi, A. (2019). Heavy metals chelating ability and antioxidant activity of Phragmites australis stems extracts. Journal of Ecological Engineering, 20(2), 116–123.
Sharma, B., Yadav, A., & Dabur, R. (2019). Interactions of medicinal climber Tinospora cordifolia with supportive interspecific plants trigger the modulation in its secondary metabolic profiles. Scientific Reports, 9, 14327.
Sharma, S., Mehmood, Y., Sharma, V., Kumar, A., Kumar, S., & Bhat, Z. (2024). Antioxidant potential of Tinospora cordifolia: Insights into its therapeutic significance. International Journal of Advanced Biochemistry Research, 8(2), 425–427.
Shrestha, T., & Lamichhane, J. (2021). Assessment of phytochemicals, antimicrobial, antioxidant and cytotoxicity activity of methanolic extract of Tinospora cordifolia. Nepal Journal of Biotechnology, 9(1), 18–23.
Singh, D., & Chaudhuri, P. K. (2017). Chemistry and pharmacology of Tinospora cordifolia. Natural Product Communications, 12(2), 1934578X1701200240.
Sinha, A., Sharma, H., Singh, B., & Patnaik, A. (2017). Phytochemical studies of methanol extracts of Tinospora cordifolia stem by GC-MS. World Journal of Pharmaceutical Research, 6(4), 1319–1326.
Sowmya, M., Ramesh, S., Ganne Venkata Sudhakar Rao, Jalantha, P., Sujatha, P. L., & Indumathi, R. (2024). Phytochemical analysis of Tinospora cordifolia by GC-MS and evaluation of its antiurolithiatic potential by in silico. The Indian Veterinary Journal, 101(4), 39–48.
Tamokou, J. de D., Simo Mpetga, D. J., Keilah Lunga, P., Tene, M., Tane, P., & Kuiate, J. R. (2012). Antioxidant and antimicrobial activities of ethyl acetate extract, fractions and compounds from stem bark of Albizia adianthifolia. BMC Complementary and Alternative Medicine, 12, 99.
Tiwari, P., Nayak, P., Prusty, S. K., & Sahu, P. K. (2018). Phytochemistry and pharmacology of Tinospora cordifolia: A review. Systematic Reviews in Pharmacy, 9(1), 70–78.
Todsaporn, D., Zubenko, A., Kartsev, V. G., Mahalapbutr, P., Geronikaki, A., Sirakanyan, S. N., Divaeva, L. N., Chekrisheva, V., Yildiz, I., Choowongkomon, K., & Rungrotmongkol, T. (2024). Furopyridine derivatives as potent inhibitors of mutant EGFR. Journal of Physical Chemistry B, 128(50), 12389–12402.
Ungureanu, A. R., Popovici, V., Oprean, C., Danciu, C., Schroder, V., Olaru, O. T., Mihai, D. P., Popescu, L., Luta, E. A., Chitescu, C. L., & Gird, C. E. (2023). Cytotoxicity analysis and in silico studies of three plant extracts with potential application in treatment of endothelial dysfunction. Pharmaceutics, 15(8), 2125.
Wai Hon, K., Zainal Abidin, S. A., Othman, I., & Naidu, R. (2020). Insights into the role of microRNAs in colorectal cancer metabolism. Cancers, 12(9), 2462.

