A Review on Hybrid Closed Loop Insulin Delivery System

Authors

  • S G Kuralarasan Krishna Teja Pharmacy Collage ,India

DOI:

https://doi.org/10.48165/aabr.2025.2.2.04

Keywords:

Type 1 diabetes mellitus, Automated insulin delivery, Hybrid Closed-Loop System, Continuous Glucose Monitoring, Artificial pancreas

Abstract

Type 1 diabetes mellitus (T1DM) is a habitual autoimmune condition taking lifelong  insulin remedy. Conventional approaches like multiple quotidian injections or  continuous subcutaneous insulin infusion are limited by hypoglycaemia trouble,  glycaemic variability, and patientburden. Automated insulin delivery (AID)  systems, particularly crossbred unrestricted- circle (HCL) systems, integrate  continuous glucose monitoring, insulin pumps, and control algorithms to optimize  insulin delivery. HCL systems automate rudimentary insulin and correction  boluses, taking manual mess boluses, and haves hown significant benefits,  including increased time- in- range (TIR), lower HbA1c, reduced hypoglycaemia,  and enhanced quality of life. These benefits are seen across different populations,  including children, grown- ups, and pregnant women. Despite these advancements,  limitations remain, analogous as mess gelcap dependence, delayed post- mess  glucose control, sensor delicacy issues, cost, and specialized malfunctions. fully  unrestricted- circle systems are being developed to count manual input and  further mimic physiological insulin regulation. With ongoing advances,HCL  systems represent a significant step toward a fully independent artificial pancreas,  offering bettered glycaemic control, safety, and quality of life for individualities  with T1DM. These systems have the eventuality to revise diabetes operation and  meliorate patientissues. 

 

References

Pilsniak, A., Otto-Buczkowska, E., et al. (2023). Type 1 diabetes — What’s new in prevention and therapeutic strategies? Pediatric Endocrinology, Diabetes and Metabolism, 29(3), 196–201.

Lie, B. A., Todd, J. A., Pociot, F., et al. (1999). The predisposition to type 1 diabetes linked to the human leukocyte antigen complex includes a novel class II gene. American Journal of Human Genetics, 64, 793–800.

Klak, M., Gomolka, M., Kowalska, P., et al. (2020). Type 1 diabetes: Genes associated with disease development. Central European Journal of Immunology, 45, 439–453.

Blanter, M., Sonk, H., Tuomilehto, S., & Flodström-Tullberg, M. (2019). Genetic and environmental interaction in type 1 diabetes: A relationship between genetic risk alleles and molecular traits of enterovirus infection. Current Diabetes Reports, 19, 82.

Dedrick, S., Sundaresh, B., Huang, Q., et al. (2020). The role of gut microbiota and environmental factors in type 1 diabetes pathogenesis. Frontiers in Endocrinology (Lausanne), 11, 78.

TRIGR Study Group & Akerblom, H. K., Krischer, J., Virtanen, S. M., et al. (2011). The trial to reduce IDDM in the genetically at risk (TRIGR) study: Recruitment, intervention and follow-up. Diabetologia, 54, 627–633.

Witso, E., Cinek, O., Tapia, G., et al. (2015). Genetic determinants of enterovirus infections: Polymorphisms in type 1 diabetes and innate immune genes in the MIDIA study. Viral Immunology, 28, 556–563.

Wong, F. S., & Tree, T. I. (2019). Historical and new insights into pathogenesis of type 1 diabetes. Clinical and Experimental Immunology, 198, 292–293.

Quinn, L. M., Wong, F. S., & Narendran, P. (2021). Environmental determinants of type 1 diabetes: From association to proving causality. Frontiers in Immunology, 12, 737964.

Diabetes Canada. (2018). 2018 clinical practice guidelines for the prevention and management of diabetes in Canada. Canadian Journal of Diabetes, 42(Suppl 1), S1–S325.

Thomas, N. J., Jones, S. E., Weedon, M. N., Shields, B. M., Oram, R. A., & Hattersley, A. T. (2018). Frequency and phenotype of type 1 diabetes in the first six decades of life: A cross-sectional, genetically stratified analysis from UK Biobank. The Lancet Diabetes & Endocrinology, 6, 122–129.

American Diabetes Association. (2019). Standards of medical care in diabetes—2019. Diabetes Care, 42, S1–S193.

Thunander, M., Petersson, C., Jonzon, K., et al. (2008). Incidence of type 1 and type 2 diabetes in adults and children in Kronoberg, Sweden. Diabetes Research and Clinical Practice, 82, 247–255.

Home, P. D., Bergenstal, R. M., Bolli, G. B., et al. (2015). New insulin glargine 300 units/mL versus glargine 100 units/mL in people with type 1 diabetes: A randomized, phase 3a open-label clinical trial (EDITION 4). Diabetes Care, 38, 2217–2225.

Bally, L., Thabit, H., Kojzar, H., et al. (2017). Day-and-night glycemic control with closed-loop insulin delivery versus conventional insulin pump therapy in free-living adults with well-controlled type 1 diabetes. The Lancet Diabetes & Endocrinology, 5, 261–270.

Sharifi, A., De Bock, M. I., Jayawardena, D., et al. (2016). Glycemia, treatment satisfaction, cognition, and sleep quality using closed-loop system overnight versus sensor-augmented pump. Diabetes Technology & Therapeutics, 18, 772–783.

Tauschmann, M., Thabit, H., Bally, L., et al. (2018). Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: A multicentre randomized trial. The Lancet, 392, 1321–1329.

Renard, E. (2008). Insulin delivery route for the artificial pancreas. Journal of Diabetes Science and Technology, 2(4), 735–738.

Lal, R. A., Ekhlaspour, L., Hood, K., et al. (2019). Realizing a closed-loop (artificial pancreas) system for treatment of type 1 diabetes. Endocrine Reviews, 40(6), 1521–1546.

Rodríguez-Sanmiéanto, D. L., León-Vargas, F., & García-Jaramillo, M. (2022). Artificial pancreas systems: Experience from concept to commercialization. Expert Review of Medical Devices, 19(11), 877–894.

Boughton, C. K., & Hovorka, R. (2019). Is an artificial pancreas for type 1 diabetes effective? Diabetic Medicine, 36(3), 279–286.

Tauschmann, M., & Hovorka, R. (2018). Technology in the management of type 1 diabetes mellitus: Current status and future prospects. Nature Reviews Endocrinology, 14(8), 464–475.

Forlenza, G. P., Li, Z., Buckingham, B. A., et al. (2018). Predictive low-glucose suspend reduces hypoglycemia: PROLOG trial. Diabetes Care, 41(10), 2155–2161.

Bergenstal, R. M., Klonoff, D. C., Garg, S. K., et al. (2013). Threshold-based insulin-pump interruption for reduction of hypoglycemia. New England Journal of Medicine, 369(3), 224–232.

Spaic, T., Driscoll, M., Raghinaru, D., et al. (2017). Predictive hyperglycemia and hypoglycemia minimization. Diabetes Care, 40(3), 359–366.

Nimri, R., Müller, I., Atlas, E., et al. (2014). MD-Logic overnight control for home use in patients with type 1 diabetes. Diabetes Care, 37(11), 3025–3032.

Phillip, M., Battelino, T., Atlas, E., et al. (2013). Nocturnal glucose control with an artificial pancreas at a diabetes camp. New England Journal of Medicine, 368(9),824–833.

Ekhlaspour, L., Nally, L. M., El-Khatib, F. H., et al. (2019). Feasibility studies of an insulin-only bionic pancreas. Journal of Diabetes Science and Technology, 13(6), 1001–1007.

Breton, M. D., Chernavvsky, D. R., Forlenza, G. P., et al. (2017). Closed-loop control during intense prolonged outdoor exercise in adolescents with type 1 diabetes. Diabetes Care, 40(12), 1644–1650.

Newman, C., Hartnell, S., Wilinska, M., Alwan, H., & Hovorka, R. (2025). Real-world evidence of the Cambridge hybrid closed-loop app. Journal of Diabetes Science and Technology, 19(1), 165–168.

Ware, J., Allen, J. M., Boughton, C. K., Wilinska, M. E., et al. (2024). Eighteen-month hybrid closed-loop use in very young children with type 1 diabetes. Diabetes Care, 47(12), 2189–2195.

Giannoulaki, P., Kotzakioulafi, E., Nakas, A., et al. (2024). Advanced hybrid closed-loop system during pregnancy. Journal of Clinical Medicine, 13, 1441.

Fogh-Andersen, N., Altura, B. M., Altura, B. T., & Siggaard-Andersen, O. (1995). Composition of interstitial fluid. Clinical Chemistry, 41, 1522–1525.

Schrangl, P., Reiterer, F., Heinemann, L., Freckmann, G., & Del Re, L. (2018). Limits to the evaluation of CGM accuracy. Biosensors, 8, 50.

Coyle, S., Curto, V. F., Benito-Lopez, F., Florea, L., & Diamond, D. (2014). Wearable bio and chemical sensors. In Wearable Sensors (pp. 65–83). Academic Press.

Richter, E. A., & Hargreaves, M. (2013). Exercise, GLUT4, and skeletal muscle glucose uptake. Physiological Reviews, 93, 993–1017.

Staal, O. M., Hansen, H. M. U., Christiansen, S. C., et al. (2018). Differences between flash glucose monitor and finger-prick measurements. Biosensors, 8, 93.

Schmelzeisen-Redeker, G., Schoemaker, M., Kirchsteiger, H., Freckmann, G., Heinemann, L., & Del Re, L. (2015). Time delay of CGM sensors. Journal of Diabetes Science and Technology, 9, 1006–1015.

Davey, R. J., Low, C., Jones, T. W., & Fournier, P. A. (2010). Intrinsic lag of CGM systems. Journal of Diabetes Science and Technology, 4, 1393–1399.

Joseph, J. I. (2021). Review of implantable Senseonics CGM system. Journal of Diabetes Science and Technology, 15, 167–173.

Ekhlaspour, L., Forlenza, G. P., Chernavvsky, D., et al. (2019). Closed-loop control in adolescents and children during winter sports. Pediatric Diabetes, 20(6), 759–768.

Bekiari, E., Kitsios, K., Thabit, H., et al. (2018). Artificial pancreas: Systematic review and meta-analysis. BMJ, 361, k1310.

Weisman, A., Bai, J.-W., Cardinez, M., Kramer, C. K., & Perkins, B. A. (2017). Effect of artificial pancreas systems on glycaemic control. The Lancet Diabetes & Endocrinology, 5(7), 501–512.

Published

2025-12-09

How to Cite

A Review on Hybrid Closed Loop Insulin Delivery System. (2025). Advances in Applied Biological Research, 2(2), 25-34. https://doi.org/10.48165/aabr.2025.2.2.04